cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A272129 a(n) = 32*n^2 - 56*n + 25.

Original entry on oeis.org

25, 1, 41, 145, 313, 545, 841, 1201, 1625, 2113, 2665, 3281, 3961, 4705, 5513, 6385, 7321, 8321, 9385, 10513, 11705, 12961, 14281, 15665, 17113, 18625, 20201, 21841, 23545, 25313, 27145, 29041, 31001, 33025, 35113, 37265, 39481, 41761, 44105, 46513, 48985
Offset: 0

Views

Author

Vincenzo Librandi, Apr 26 2016

Keywords

Comments

Subsequence of A001844.

Crossrefs

Programs

  • Magma
    [32*n^2 - 56*n + 25: n in [0..50]];
    
  • Maple
    [32*n^2-56*n+25$n=0..40]; # Muniru A Asiru, Jan 28 2019
  • Mathematica
    Table[32 n^2 - 56 n + 25, {n, 0, 40}]
    LinearRecurrence[{3,-3,1},{25,1,41},50] (* Harvey P. Dale, Jul 03 2018 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(32*n^2-56*n+25, ", ")); \\ Altug Alkan, Apr 26 2016

Formula

O.g.f.: (25 - 74*x + 113*x^2)/(1-x)^3.
E.g.f.: (25 - 24*x + 32*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
n*a(n) = 1 + 3^5*(n-1)/(n+1) + 5^5*((n-1)*(n-2))/((n+1)*(n+2)) + ... for n >= 1. See A245244. - Peter Bala, Jan 19 2019

A272131 a(n) = 384*n^3 - 1184*n^2 + 1228*n - 427.

Original entry on oeis.org

-427, 1, 365, 2969, 10117, 24113, 47261, 81865, 130229, 194657, 277453, 380921, 507365, 659089, 838397, 1047593, 1288981, 1564865, 1877549, 2229337, 2622533, 3059441, 3542365, 4073609, 4655477, 5290273, 5980301, 6727865, 7535269, 8404817, 9338813, 10339561
Offset: 0

Views

Author

Vincenzo Librandi, Apr 26 2016

Keywords

Crossrefs

Programs

  • Magma
    [384*n^3 - 1184*n^2 + 1228*n - 427: n in [0..50]];
    
  • Maple
    [384*n^3-1184*n^2+1228*n-427$n=0..35]; # Muniru A Asiru, Jan 28 2019
  • Mathematica
    Table[384 n^3 - 1184 n^2 + 1228 n - 427, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{-427,1,365,2969},40] (* Harvey P. Dale, Aug 24 2024 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(384*n^3-1184*n^2+1228*n-427, ", ")); \\ Altug Alkan, Apr 26 2016

Formula

O.g.f.: (-427 + 1709*x - 2201*x^2 + 3223*x^3)/(1-x)^4.
E.g.f.: (-427 + 428*x - 32*x^2 + 384*x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
See page 7 in Brent's paper:
a(n) = (2*n-1)^2*A272129(n) - 4*(n-1)^2*A272129(n-1).
A272132(n) = (2*n-1)^2*a(n) - 4*(n-1)^2*a(n-1).
n*a(n) = 1 + 3^7*(n-1)/(n+1) + 5^7*((n-1)*(n-2))/((n+1)*(n+2)) + ... for n >= 1. See A245244. - Peter Bala, Jan 19 2019

A272133 a(n) = 122880*n^5 - 829440*n^4 + 2258688*n^3 - 3076288*n^2 + 2079892*n - 555731.

Original entry on oeis.org

-555731, 1, 29525, 1657129, 16591741, 80872529, 269614501, 711754105, 1604794829, 3229552801, 5964902389, 10302521801, 16861638685, 26403775729, 39847496261, 58283149849, 82987617901, 115439059265, 157331655829, 210590358121, 277385630909, 360148198801
Offset: 0

Views

Author

Vincenzo Librandi, Apr 26 2016

Keywords

Crossrefs

Programs

  • Magma
    [122880*n^5 - 829440*n^4 + 2258688*n^3 -3076288*n^2 + 2079892*n - 555731: n in [0..30]];
    
  • Maple
    [122880*n^5-829440*n^4+2258688*n^3-3076288*n^2+2079892*n-555731$n=0..30]; # Muniru A Asiru, Jan 28 2019
  • Mathematica
    Table[122880 n^5 - 829440 n^4 + 2258688 n^3 - 3076288 n^2 + 2079892 n - 555731, {n, 0, 40}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{-555731,1,29525,1657129,16591741,80872529},30] (* Harvey P. Dale, Feb 10 2021 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(122880*n^5 - 829440*n^4 + 2258688*n^3 - 3076288*n^2 + 2079892*n - 555731, ", ")); \\ Altug Alkan, Apr 26 2016

Formula

O.g.f.: (-555731 + 3334387*x - 8306446*x^2 + 12594614*x^3 - 1244143*x^4 + 8922919*x^5)/(1-x)^6.
E.g.f.: (-555731 + 555732*x - 263104*x^2 + 354048*x^3 + 399360*x^4 + 122880*x^5)*exp(x).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (2*n-1)^2*A272132(n) - 4*(n-1)^2*A272132(n-1), see page 7 in Brent's paper.
n*a(n) = 1 + 3^11*(n-1)/(n+1) + 5^11*((n-1)*(n-2))/((n+1)*(n+2)) + ... for n >= 1. See A245244. - Peter Bala, Jan 19 2019
Showing 1-3 of 3 results.