cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A076808 a(n) = 82n^3 - 1228n^2 + 6130n - 5861.

Original entry on oeis.org

-5861, -877, 2143, 3691, 4259, 4339, 4423, 5003, 6571, 9619, 14639, 22123, 32563, 46451, 64279, 86539, 113723, 146323, 184831, 229739, 281539, 340723, 407783, 483211, 567499, 661139, 764623, 878443, 1003091, 1139059, 1286839, 1446923, 1619803, 1805971
Offset: 0

Views

Author

Hilko Koning (hilko(AT)hilko.net), Nov 18 2002

Keywords

Comments

A prime-generating cubic polynomial.
For n=0 ... 31, the absolute value of terms in this sequence are primes. This is not the case for n=32. See A272323 and A272324. - Robert Price, Apr 25 2016

Crossrefs

Programs

  • Mathematica
    Table[82 n^3 - 1228 n^2 + 6130 n - 5861, {n, 0, 31}] (* or *)
    CoefficientList[Series[(13301 x^3 - 29515 x^2 + 22567 x - 5861)/(x - 1)^4, {x, 0, 31}], x] (* Michael De Vlieger, Apr 25 2016 *)
    LinearRecurrence[{4,-6,4,-1},{-5861,-877,2143,3691},40] (* Harvey P. Dale, Jun 18 2018 *)
  • Maxima
    A076808(n):=82*n^3-1228*n^2+6130*n-5861$
    makelist(A076808(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
    
  • PARI
    a(n)=82*n^3-1228*n^2+6130*n-5861 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (13301*x^3-29515*x^2+22567*x-5861)/(x-1)^4. - Colin Barker, Nov 10 2012
E.g.f.: (-5861 + 4984*x - 982*x^2 + 82*x^3)*exp(x). - Ilya Gutkovskiy, Apr 25 2016

A272323 Nonnegative numbers n such that abs(82n^3 - 1228n^2 + 6130n - 5861) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 37, 39, 41, 43, 47, 49, 50, 53, 54, 55, 59, 61, 63, 64, 67, 72, 73, 75, 76, 81, 84, 86, 87, 88, 89, 90, 92, 95, 97, 98, 102, 103, 104
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Comments

32 is the smallest number not in this sequence.

Examples

			4 is in this sequence since 82*4^3 - 1228*4^2 + 6130*4 - 5861 = 5248-19648+24520-5861 = 4259 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[82#^3 - 1228#^2 + 6130# - 5861] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(abs(82*n^3-1228*n^2+6130*n-5861)), print1(n, ", "))); \\ Altug Alkan, Apr 25 2016
Showing 1-2 of 2 results.