cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A076809 a(n) = n^4 + 853n^3 + 2636n^2 + 3536n + 1753.

Original entry on oeis.org

1753, 8779, 26209, 59197, 112921, 192583, 303409, 450649, 639577, 875491, 1163713, 1509589, 1918489, 2395807, 2946961, 3577393, 4292569, 5097979, 5999137, 7001581, 8110873, 9332599, 10672369, 12135817, 13728601, 15456403, 17324929, 19339909, 21507097, 23832271, 26321233, 28979809, 31813849, 34829227
Offset: 0

Views

Author

Hilko Koning (hilko(AT)hilko.net), Nov 18 2002

Keywords

Comments

A prime-generating quartic polynomial.
For n=0 ... 20, the terms in this sequence are primes. This is not the case for n=21. See A272325 and A272326. - Robert Price, Apr 25 2016

Crossrefs

Programs

  • Maple
    A076809:=n->n^4 + 853*n^3 + 2636*n^2 + 3536*n + 1753; seq(A076809(n), n=0..100); # Wesley Ivan Hurt, Nov 13 2013
  • Mathematica
    Table[n^4 + 853n^3 + 2636n^2 + 3536n + 1753, {n,0,100}] (* Wesley Ivan Hurt, Nov 13 2013 *)
    CoefficientList[Series[-(x^4 - 1588 x^3 - 156 x^2 + 14 x + 1753)/(x - 1)^5, {x, 0, 33}], x] (* Michael De Vlieger, Apr 25 2016 *)
    LinearRecurrence[{5,-10,10,-5,1},{1753,8779,26209,59197,112921},40] (* Harvey P. Dale, Jan 20 2025 *)
  • Maxima
    A076809(n):=n^4 + 853*n^3 + 2636*n^2 + 3536*n + 1753$
    makelist(A076809(n),n,0,30); /* Martin Ettl, Nov 08 2012 */

Formula

G.f.: -(x^4-1588*x^3-156*x^2+14*x+1753)/(x- 1)^5. [Colin Barker, Nov 11 2012]
E.g.f.: (1753 + 7026*x + 5202*x^2 + 859*x^3 + x^4)*exp(x). - Ilya Gutkovskiy, Apr 25 2016

Extensions

More terms from Michael De Vlieger, Apr 25 2016

A272323 Nonnegative numbers n such that abs(82n^3 - 1228n^2 + 6130n - 5861) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 37, 39, 41, 43, 47, 49, 50, 53, 54, 55, 59, 61, 63, 64, 67, 72, 73, 75, 76, 81, 84, 86, 87, 88, 89, 90, 92, 95, 97, 98, 102, 103, 104
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Comments

32 is the smallest number not in this sequence.

Examples

			4 is in this sequence since 82*4^3 - 1228*4^2 + 6130*4 - 5861 = 5248-19648+24520-5861 = 4259 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[82#^3 - 1228#^2 + 6130# - 5861] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(abs(82*n^3-1228*n^2+6130*n-5861)), print1(n, ", "))); \\ Altug Alkan, Apr 25 2016

A095946 Primes of the form 8n^4 - 2n^3 - 132n^2 + 318n + 80557.

Original entry on oeis.org

80557, 80749, 80777, 80917, 81637, 83597, 87649, 94837, 106397, 123757, 148537, 182549, 227797, 286477, 360977, 453877, 567949, 706157, 871657, 1067797, 1298117, 1566349, 1876417, 2232437, 2638717, 3099757, 3620249, 4205077, 4859317
Offset: 1

Views

Author

Hilko Koning (hilko(AT)hilko.net), Jul 13 2004

Keywords

Comments

The first composite has n = 29.

Crossrefs

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 8*n^4-2*n^3-132*n^2+ 318*n+80557]; // Vincenzo Librandi, Jul 17 2012
  • Mathematica
    Select[Table[8n^4-2n^3-132n^2+318n+80557,{n,0,2000}],PrimeQ] (* Vincenzo Librandi, Jul 17 2012 *)

A218456 2*n^3 - 313*n^2 + 6823*n - 13633.

Original entry on oeis.org

-13633, -7121, -1223, 4073, 8779, 12907, 16469, 19477, 21943, 23879, 25297, 26209, 26627, 26563, 26029, 25037, 23599, 21727, 19433, 16729, 13627, 10139, 6277, 2053, -2521, -7433, -12671, -18223, -24077, -30221, -36643, -43331, -50273, -57457
Offset: 0

Views

Author

Pedja Terzic, Oct 29 2012

Keywords

Comments

A prime-producing cubic polynomial. Produces 79 distinct primes if we scan the absolute values of the first 100 terms..

Crossrefs

Programs

  • Mathematica
    Table[2n^3-313n^2+6823n-13633,{n,0,99}]
    LinearRecurrence[{4,-6,4,-1},{-13633,-7121,-1223,4073},40] (* Harvey P. Dale, May 03 2018 *)
  • Maxima
    A218456(n):=2*n^3-313*n^2+6823*n-13633$
    makelist(A218456(n),n,0,30); /* Martin Ettl, Nov 08 2012 */

Formula

G.f.: (20771*x^3-54537*x^2+47411*x-13633)/(x-1)^4. [Colin Barker, Nov 10 2012]

A272324 Primes of the form abs(82n^3 - 1228n^2 + 6130n - 5861) in order of increasing nonnegative n.

Original entry on oeis.org

5861, 877, 2143, 3691, 4259, 4339, 4423, 5003, 6571, 9619, 14639, 22123, 32563, 46451, 64279, 86539, 113723, 146323, 184831, 229739, 281539, 340723, 407783, 483211, 567499, 661139, 764623, 878443, 1003091, 1139059, 1286839, 1446923, 2005919, 2693363, 3229579
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Examples

			4259 is in this sequence since 82*4^3 - 1228*4^2 + 6130*4 - 5861 = 5248-19648+24520-5861 = 4259 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[82n^3 - 1228n^2 + 6130n - 5861, PrimeQ[#] &]

A218457 a(n) = 6*n^3 - 263*n^2 + 3469*n - 12841.

Original entry on oeis.org

-12841, -9629, -6907, -4639, -2789, -1321, -199, 613, 1151, 1451, 1549, 1481, 1283, 991, 641, 269, -89, -397, -619, -719, -661, -409, 73, 821, 1871, 3259, 5021, 7193, 9811, 12911, 16529, 20701, 25463, 30851, 36901, 43649, 51131, 59383, 68441, 78341, 89119
Offset: 0

Views

Author

Pedja Terzic, Oct 29 2012

Keywords

Comments

A prime-producing cubic polynomial. Produces 78 distinct primes if we scan the absolute values of the first 100 terms.

Crossrefs

Programs

  • Mathematica
    Table[6n^3-263n^2+3469n-12841,{n,0,99}]
  • PARI
    a(n) = {6*n^3 - 263*n^2 + 3469*n - 12841} \\ Andrew Howroyd, Apr 27 2020

Extensions

Signs of terms corrected and a(32) and beyond from Andrew Howroyd, Apr 27 2020

A095974 Evaluate n^4 - 93n^3 + 3196n^2 - 48008n + 265483 for n >= 0, record the primes.

Original entry on oeis.org

265483, 220579, 181523, 147793, 118891, 94343, 73699, 56533, 42443, 31051, 22003, 14969, 9643, 5743, 3011, 1213, 139, -397, -557, -479, -277, -41, 163, 293, 331, 283, 179, 73, 43, 191, 643, 1549, 3083, 5443
Offset: 0

Views

Author

Hilko Koning (hilko(AT)hilko.net), Jul 16 2004

Keywords

Comments

A prime-generating quartic polynomial.

Crossrefs

A096372 List of primes produced by a certain "prime-generating" quartic polynomial.

Original entry on oeis.org

1688311, 1410743, 1168619, 958807, 778319, 624311, 494083, 385079, 294887, 221239, 162011, 115223, 79039, 51767, 31859, 17911, 8663, 2999, -53, -1321, -1489, -1097, -541, -73, 199, 311, 443, 919, 2207, 4919, 9811, 17783, 29879, 47287, 71339, 103511, 145423, 198839
Offset: 1

Views

Author

Hilko Koning (hilko(AT)hilko.net), Jul 19 2004

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> 6*n^4 - 558*n^3 + 19354*n^2 - 296370*n + 1688311:
    select(isprime@abs, [seq(f(n),n=0..100)]); # Robert Israel, Jan 16 2018
  • Mathematica
    Select[Table[6n^4-558n^3+19354n^2-296370n+1688311,{n,0,40}],PrimeQ] (* Harvey P. Dale, Dec 31 2018 *)

Formula

Evaluate 6n^4 - 558n^3 + 19354n^2 - 296370n + 1688311 for n >= 0, record the primes.

Extensions

Offset changed to 1 by Robert Israel, Jan 16 2018

A218458 a(n) = 2*n^3 - 163*n^2 + 2777*n - 11927.

Original entry on oeis.org

-11927, -9311, -7009, -5009, -3299, -1867, -701, 211, 881, 1321, 1543, 1559, 1381, 1021, 491, -197, -1031, -1999, -3089, -4289, -5587, -6971, -8429, -9949, -11519, -13127, -14761, -16409, -18059, -19699, -21317, -22901, -24439, -25919
Offset: 0

Views

Author

Pedja Terzic, Oct 29 2012

Keywords

Comments

A prime-producing cubic polynomial. Produces 78 distinct primes if we scan the absolute values of the first 100 terms.

Crossrefs

Programs

  • Magma
    [2*n^3 - 163*n^2 + 2777*n - 11927 : n in [0..60]]; // Wesley Ivan Hurt, Apr 21 2021
  • Mathematica
    Table[2n^3-163n^2+2777n-11927,{n,0,99}]
    LinearRecurrence[{4,-6,4,-1},{-11927,-9311,-7009,-5009},40] (* Harvey P. Dale, Jan 31 2017 *)
  • Maxima
    A218458(n):=2*n^3-163*n^2+2777*n-11927$
    makelist(A218458(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
    

Formula

G.f.: (-11927+38397*x-41327*x^2+14869*x^3)/(x-1)^4. - R. J. Mathar, Nov 07 2012
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 21 2021
Showing 1-9 of 9 results.