cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272378 a(n) = n*(6*n^2 - 8*n + 3).

Original entry on oeis.org

0, 1, 22, 99, 268, 565, 1026, 1687, 2584, 3753, 5230, 7051, 9252, 11869, 14938, 18495, 22576, 27217, 32454, 38323, 44860, 52101, 60082, 68839, 78408, 88825, 100126, 112347, 125524, 139693, 154890, 171151, 188512, 207009, 226678, 247555, 269676, 293077
Offset: 0

Views

Author

Vincenzo Librandi, Apr 29 2016

Keywords

Crossrefs

Programs

  • Magma
    [n*(6*n^2 - 8*n + 3): n in [0..50]];
    
  • Mathematica
    Table[n (6 n^2 - 8 n + 3), {n, 0, 50}]
    LinearRecurrence[{4,-6,4,-1},{0,1,22,99},40] (* Harvey P. Dale, Dec 29 2017 *)
  • PARI
    vector(100, n, n--; n*(6*n^2 - 8*n + 3)) \\ Altug Alkan, Apr 29 2016
    
  • Python
    for n in range(0,10**3):print(n*(6*n**2-8*n+3),end=", ") # Soumil Mandal, Apr 30 2016

Formula

G.f.: x*(1 + 18*x + 17*x^2)/(1 - x)^4.
E.g.f.: x*(1 + 10*x + 6*x^2)*exp(x).
a(n) = n*A080859(n+1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3.
See page 7 in Brent's paper:
a(n) = n^2*A000384(n) - n*(n-1)*A000384(n-1).
A272379(n) = n^2*a(n) - n*(n-1)*a(n-1).
From Peter Bala, Jan 30 2019: (Start)
Let a(n,x) = Product_{k = 0..n} (x - k)/(x + k). Then for positive integer x we have x^2*(6*x^2 - 8*x + 3) = Sum_{n >= 0} ((n+1)^7 + n^7)*a(n,x) and x*(6*x^2 - 8*x + 3) = Sum_{n >= 0} ((n+1)^6 - n^6)*a(n,x). Both identities are also valid for complex x in the half-plane Re(x) > 7/2. See the Bala link in A036970. Cf. A272379. (End)