cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A272158 Expansion of e.g.f.: (sin(x) + sin(4*x)) / sin(5*x), even-indexed terms only.

Original entry on oeis.org

1, 4, 116, 8764, 1242356, 283202524, 94690800596, 43653497804284, 26538141745926836, 20569900661155862044, 19799583458238177373076, 23170654021955185224223804, 32397957659053038859810291316, 53342240536065395589518876137564, 102148810140776173440241789042633556, 225108984136852617968906778958292851324, 565646056287498262815832721506444163551796
Offset: 0

Views

Author

Paul D. Hanna, Apr 30 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + 4*x^2/2! + 116*x^4/4! + 8764*x^6/6! + 1242356*x^8/8! + 283202524*x^10/10! + 94690800596*x^12/12! +...
such that A(x) = (sin(x) + sin(4*x)) / sin(5*x).
O.g.f.: F(x) = 1 + 4*x + 116*x^2 + 8764*x^3 + 1242356*x^4 + 283202524*x^5 + 94690800596*x^6 + 43653497804284*x^7 + 26538141745926836*x^8 +...
such that the o.g.f. can be expressed as the continued fraction:
F(x) = 1/(1 - 1*4*x/(1 - 5^2*x/(1 - 6*9*x/(1 - 10^2*x/(1 - 11*14*x/(1 - 15^2*x/(1 - 16*19*x/(1 - 20^2*x/(1 - 21*24*x/(1 - 25^2*x/(1 - 26*29*x/(1 - ...)))))))))))).
		

Crossrefs

Cf. A272467.

Programs

  • Maple
    seq((-25)^n*euler(2*n, 1/5), n = 0..16); # Peter Luschny, Nov 26 2020
  • Mathematica
    Table[(CoefficientList[Series[(Sin[x] + Sin[4*x]) / Sin[5*x], {x, 0, 40}], x]*Range[0, 40]!)[[2*n + 1]], {n, 0, 20}] (* Vaclav Kotesovec, Apr 30 2016 *)
    With[{nmax = 60}, CoefficientList[Series[Cos[3*x/2]/Cos[5*x/2], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; ;; 2]] (* G. C. Greubel, Oct 11 2018 *)
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(X) + sin(4*X))/sin(5*X), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(X) + cos(4*X))/(1 + cos(5*X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(I*X) + exp(4*I*X))/(1 + exp(5*I*X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: cos(3*x/2) / cos(5*x/2).
E.g.f.: (cos(x) + cos(4*x)) / (1 + cos(5*x)).
E.g.f.: (exp(i*x) + exp(4*i*x)) / (1 + exp(5*i*x)), where i^2 = -1.
E.g.f.: exp(i*x)/(1 + exp(5*i*x)) + exp(-i*x)/(1 + exp(-5*i*x)), where i^2 = -1.
O.g.f.: 1/(1 - 1*4*x/(1 - 5^2*x/(1 - 6*9*x/(1 - 10^2*x/(1 - ... - (5*n+1)*(5*n+4)*x/(1 - (5*n+5)^2*x/(1 - ...))))))), a continued fraction.
a(n) ~ (2*n)! * sqrt(2*(5 - sqrt(5))) * 5^(2*n) / Pi^(2*n+1). - Vaclav Kotesovec, Apr 30 2016
a(n) = (-25)^n*Euler(2*n, 1/5). - Peter Luschny, Nov 26 2020

A273031 Expansion of e.g.f.: (sin(x) + sin(6*x)) / sin(7*x), even-indexed terms only.

Original entry on oeis.org

1, 6, 330, 48726, 13534410, 6046913046, 3962771924490, 3580686141374166, 4266519857080266570, 6481738795978992136086, 12228451239686387772736650, 28048508112504152087554462806, 76867928701091608252297826870730, 248058932215537567368765344245378326, 931049990613171839116868739409352364810, 4021504762182514582910341826029900914866646
Offset: 0

Views

Author

Paul D. Hanna, May 13 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + 6*x^2/2! + 330*x^4/4! + 48726*x^6/6! + 13534410*x^8/8! + 6046913046*x^10/10! + 3962771924490*x^12/12! + 3580686141374166*x^14/14! +...
such that A(x) = (sin(x) + sin(6*x)) / sin(7*x).
O.g.f.: F(x) = 1 + 6*x + 330*x^2 + 48726*x^3 + 13534410*x^4 + 6046913046*x^5 + 3962771924490*x^6 + 3580686141374166*x^7 +...
such that the o.g.f. can be expressed as the continued fraction:
F(x) = 1/(1 - 1*6*x/(1 - 7^2*x/(1 - 8*13*x/(1 - 14^2*x/(1 - 15*20*x/(1 - 21^2*x/(1 - 22*27*x/(1 - 28^2*x/(1 - 29*34*x/(1 - 35^2*x/(1 - 36*41*x/(1 - ...)))))))))))).
		

Crossrefs

Programs

  • Maple
    seq((-49)^n*euler(2*n, 1/7), n = 0..15); # Peter Luschny, Nov 26 2020
  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[(Sin[x]+Sin[6x])/Sin[7x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Jul 08 2018 *)
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(1*X) + sin(6*X))/sin(7*X), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(1*X) + cos(6*X))/(1 + cos(7*X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(1*I*X) + exp(6*I*X))/(1 + exp(7*I*X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: cos(5*x/2) / cos(7*x/2).
E.g.f.: (cos(x) + cos(6*x)) / (1 + cos(7*x)).
E.g.f.: (exp(i*x) + exp(6*i*x)) / (1 + exp(7*i*x)), where i^2 = -1.
E.g.f.: exp(i*x)/(1 + exp(7*i*x)) + exp(-i*x)/(1 + exp(-7*i*x)), where i^2 = -1.
O.g.f.: 1/(1 - 1*6*x/(1 - 7^2*x/(1 - 8*13*x/(1 - 14^2*x/(1 - ... - (7*n+1)*(7*n+6)*x/(1 - (7*n+7)^2*x/(1 - ...))))))), a continued fraction.
a(n) ~ (2*n)! * 4*cos(5*Pi/14) * 7^(2*n) / Pi^(2*n+1). - Vaclav Kotesovec, May 14 2016
a(n) = (-49)^n*Euler(2*n, 1/7). - Peter Luschny, Nov 26 2020

A272468 E.g.f.: ( (sin(2*x) + sin(3*x)) / sin(5*x) )^(1/6).

Original entry on oeis.org

1, 1, 16, 861, 96151, 18222146, 5239250961, 2125867405481, 1156996954702696, 813362896424049741, 717389213154874345231, 775695142663748111834426, 1009031532010773852853587441, 1554520965241408817492939532161, 2799176143277347317623990785312576, 5825065298299069164298296125454811821, 13872866932424152546975929055708940259511, 37490505378893715802821349609594581921197906
Offset: 0

Views

Author

Paul D. Hanna, Apr 30 2016

Keywords

Comments

Conjecture: Given positive integers a and b, then the coefficient of x^(2*n)/(2*n)! is integral for n>=0 in the power series expansion of ( (sin(a*x) + sin(b*x)) / sin((a+b)*x) )^(1/(a*b)).

Examples

			G.f.: A(x) = 1 + x^2/2! + 16*x^4/4! + 861*x^6/6! + 96151*x^8/8! + 18222146*x^10/10! + 5239250961*x^12/12! + 2125867405481*x^14/14! +...
RELATED SERIES.
The logarithm of the e.g.f. begins:
log(A(x)) = x^2/2! + 13*x^4/4! + 651*x^6/6! + 69173*x^8/8! + 12613931*x^10/10! + 3514607733*x^12/12! + 1388804117611*x^14/14! + 738755067184693*x^16/16! + 508990446726347691*x^18/18! + 440936448176697240053*x^20/20! +...
such that the coefficients of x^(2*n)/(2*n)! consist entirely of odd integers.
		

Crossrefs

Cf. A272467.

Programs

  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( ((sin(2*X) + sin(3*X))/sin(5*X))^(1/6), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( ( (cos(2*X) + cos(3*X))/(1 + cos(5*X)) )^(1/6), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( ((exp(2*I*X) + exp(3*I*X))/(1 + exp(5*I*X)))^(1/6), 2*n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: ( (cos(2*x) + cos(3*x)) / (1 + cos(5*x)) )^(1/6).
E.g.f.: ( (exp(2*i*x) + exp(3*i*x)) / (1 + exp(5*i*x)) )^(1/6), where i^2 = -1.
a(n) = 1 (mod 5) for n>0.
a(n) ~ (2*n)! * (2*(5 + sqrt(5)))^(1/12) * 5^(2*n) / (Gamma(1/6) * Pi^(2*n + 1/6) * n^(5/6)). - Vaclav Kotesovec, Apr 30 2016

A272481 E.g.f. A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2) represented as a triangle, read by rows, where row n lists of coefficients T(n,k) of x^(2*n)*y^k/n! in A(x,y), for k=0..2*n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 3, 1, 0, 0, 3, 15, 25, 15, 3, 0, 0, 17, 119, 329, 455, 329, 119, 17, 0, 0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0, 0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0, 0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0, 0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0
Offset: 0

Views

Author

Paul D. Hanna, May 01 2016

Keywords

Comments

Row sums equal the Euler numbers, A000364.
Column 1 equals A110501, the unsigned Genocchi numbers of first kind.
Main diagonal equals A272482, where A272482(n) = A005799(n)/2^n * (2*n)!/(n!)^2.
Sum_{k=0..2*n} (-1)^k*T(n,k) = (-1)^n.
Sum_{k=0..2*n} (-2)^k*T(n,k) = 2*(-1)^n for n>0.
Sum_{k=0..2*n} 2^k*T(n,k) = (-1)^n*A210657(n).
Sum_{k=0..2*n} 3^k*T(n,k) = A000281(n).
Sum_{k=0..2*n} 4^k*T(n,k) = A272158(n).
Sum_{k=0..2*n} 2^k*3^(2*n-k)*T(n,k) = A272467(n).

Examples

			E.g.f.: A(x,y) = 1 + x^2*(y)/2! + x^4*(y + 3*y^2 + y^3)/4! +
x^6*(3*y + 15*y^2 + 25*y^3 + 15*y^4 + 3*y^5)/6! +
x^8*(17*y + 119*y^2 + 329*y^3 + 455*y^4 + 329*y^5 + 119*y^6 + 17*y^7)/8! +
x^10*(155*y + 1395*y^2 + 5325*y^3 + 11235*y^4 + 14301*y^5 + 11235*y^6 + 5325*y^7 + 1395*y^8 + 155*y^9)/10! +
x^12*(2073*y + 22803*y^2 + 110605*y^3 + 311355*y^4 + 563013*y^5 + 683067*y^6 + 563013*y^7 + 311355*y^8 + 110605*y^9 + 22803*y^10 + 2073*y^11)/12! +...
where A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2).
This triangle of coefficients of x^(2*n)*y^k/(2*n)!, k=0..2*n, begins:
[1];
[0, 1, 0];
[0, 1, 3, 1, 0];
[0, 3, 15, 25, 15, 3, 0];
[0, 17, 119, 329, 455, 329, 119, 17, 0];
[0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0];
[0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0];
[0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0];
[0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0]; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k) = my(X=x+x*O(x^(2*n))); (2*n)!*polcoeff(polcoeff( cos((X-x*y)/2)/cos((X+x*y)/2), 2*n,x), k,y)}
    for(n=0,10, for(k=0,2*n, print1(T(n,k),", "));print(""))

Formula

E.g.f.: A(x,y) = (cos(x) + cos(x*y)) / (1 + cos(x + x*y)).
E.g.f.: A(x,y) = (sin(x) + sin(x*y)) / sin(x + x*y).
E.g.f.: A(x,y) = (exp(i*x) + exp(i*x*y)) / (1 + exp(i*(x + x*y))), where i^2 = -1.
O.g.f.: 1/(1 - 1*y*x/(1 - (1+y)^2*x/(1 - (1+2*y)*(2+1*y)*x/(1 - (2+2*y)^2*x/(1 - (2+3*y)*(3+2*y)*x/(1 - (3+3*y)^2*x/(1 - (3+4*y)*(4+3*y)*x/(1 - (4+4*y)^2*x/(1 - (4+5*y)*(5+4*y)*x/(1 - (5+5*y)^2*x/(1 - ...))))))))))), a continued fraction.

A273032 E.g.f.: (sin(2*x) + sin(5*x)) / sin(7*x).

Original entry on oeis.org

1, 10, 590, 87730, 24386030, 10896056050, 7140660673070, 6452172716731570, 7688003030273049710, 11679689713099591922290, 22034907735675944799243950, 50541665200040978421599836210, 138511221399376147951707017623790, 446986750662532432703671725548281330, 1677694112006573410256120810193681597230, 7246501185695514998554969680297128881865650
Offset: 0

Views

Author

Paul D. Hanna, May 13 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + 10*x^2/2! + 590*x^4/4! + 87730*x^6/6! + 24386030*x^8/8! + 10896056050*x^10/10! + 7140660673070*x^12/12! +...
such that A(x) = (sin(2*x) + sin(5*x)) / sin(7*x).
O.g.f.: F(x) = 1 + 10*x + 590*x^2 + 87730*x^3 + 24386030*x^4 + 10896056050*x^5 + 7140660673070*x^6 + 6452172716731570*x^7 +...
such that the o.g.f. can be expressed as the continued fraction:
F(x) = 1/(1 - 2*5*x/(1 - 7^2*x/(1 - 9*12*x/(1 - 14^2*x/(1 - 16*19*x/(1 - 21^2*x/(1 - 23*26*x/(1 - 28^2*x/(1 - 30*33*x/(1 - 35^2*x/(1 - 37*40*x/(1 - ...)))))))))))).
		

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[(Sin[2x]+Sin[5x])/Sin[7x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Jul 20 2018 *)
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(2*X) + sin(5*X))/sin(7*X), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(2*X) + cos(5*X))/(1 + cos(7*X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(2*I*X) + exp(5*I*X))/(1 + exp(7*I*X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: cos(3*x/2) / cos(7*x/2).
E.g.f.: (cos(2*x) + cos(5*x)) / (1 + cos(7*x)).
E.g.f.: (exp(2*i*x) + exp(5*i*x)) / (1 + exp(7*i*x)), where i^2 = -1.
E.g.f.: exp(2*i*x)/(1 + exp(7*i*x)) + exp(-2*i*x)/(1 + exp(-7*i*x)), where i^2 = -1.
O.g.f.: 1/(1 - 2*5*x/(1 - 7^2*x/(1 - 9*12*x/(1 - 14^2*x/(1 - ... - (7*n+2)*(7*n+5)*x/(1 - (7*n+7)^2*x/(1 - ...))))))), a continued fraction.
a(n) ~ (2*n)! * 4*cos(3*Pi/14) * 7^(2*n) / Pi^(2*n+1). - Vaclav Kotesovec, May 14 2016

A273033 E.g.f.: (sin(3*x) + sin(4*x)) / sin(7*x).

Original entry on oeis.org

1, 12, 732, 109332, 30406812, 13587056052, 8904250650492, 8045727017033172, 9586782871360007772, 14564334832981893064692, 27477080512619965247054652, 63024425641459625896776174612, 172720667970739808701108304367132, 557383361208023769780400587942586932, 2092050338949043346342979863638489321212, 9036239176876728629700436615577988154925652
Offset: 0

Views

Author

Paul D. Hanna, May 13 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + 12*x^2/2! + 732*x^4/4! + 109332*x^6/6! + 30406812*x^8/8! + 13587056052*x^10/10! + 8904250650492*x^12/12! +...
such that A(x) = (sin(3*x) + sin(4*x)) / sin(7*x).
O.g.f.: F(x) = 1 + 12*x + 732*x^2 + 109332*x^3 + 30406812*x^4 + 13587056052*x^5 + 8904250650492*x^6 + 8045727017033172*x^7 +...
such that the o.g.f. can be expressed as the continued fraction:
F(x) = 1/(1 - 3*4*x/(1 - 7^2*x/(1 - 10*11*x/(1 - 14^2*x/(1 - 17*18*x/(1 - 21^2*x/(1 - 24*25*x/(1 - 28^2*x/(1 - 31*32*x/(1 - 35^2*x/(1 - 38*39*x/(1 - ...)))))))))))).
		

Crossrefs

Programs

  • Mathematica
    With[{nn=40},Take[CoefficientList[Series[(Sin[3x]+Sin[4x])/Sin[7x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(3*X) + sin(4*X))/sin(7*X), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(3*X) + cos(4*X))/(1 + cos(7*X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(3*I*X) + exp(4*I*X))/(1 + exp(7*I*X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: cos(x/2) / cos(7*x/2).
E.g.f.: (cos(3*x) + cos(4*x)) / (1 + cos(7*x)).
E.g.f.: (exp(3*i*x) + exp(4*i*x)) / (1 + exp(7*i*x)), where i^2 = -1.
E.g.f.: exp(3*i*x)/(1 + exp(7*i*x)) + exp(-3*i*x)/(1 + exp(-7*i*x)), where i^2 = -1.
O.g.f.: 1/(1 - 3*4*x/(1 - 7^2*x/(1 - 10*11*x/(1 - 14^2*x/(1 - ... - (7*n+3)*(7*n+4)*x/(1 - (7*n+7)^2*x/(1 - ...))))))), a continued fraction.
a(n) ~ (2*n)! * 4*cos(Pi/14) * 7^(2*n) / Pi^(2*n+1). - Vaclav Kotesovec, May 14 2016
From Peter Bala, May 13 2017: (Start)
G.f.: 1/(1 + 9*x - 21*x/(1 - 28*x/(1 + 9*x - 140*x/(1 - 154*x/(1 + 9*x - ... - 7*n*(7*n-4)*x/(1 - 7*n*(7*n-3)*x/(1 + 9*x - ...
G.f.: 1/(1 + 16*x - 28*x/(1 - 21*x/(1 + 16*x - 154*x/(1 - 140*x/(1 + 16*x - ... - 7*n*(7*n-3)*x/(1 - 7*n*(7*n-4)*x/(1 + 16*x - .... (End)
Showing 1-6 of 6 results.