A272158
Expansion of e.g.f.: (sin(x) + sin(4*x)) / sin(5*x), even-indexed terms only.
Original entry on oeis.org
1, 4, 116, 8764, 1242356, 283202524, 94690800596, 43653497804284, 26538141745926836, 20569900661155862044, 19799583458238177373076, 23170654021955185224223804, 32397957659053038859810291316, 53342240536065395589518876137564, 102148810140776173440241789042633556, 225108984136852617968906778958292851324, 565646056287498262815832721506444163551796
Offset: 0
E.g.f.: A(x) = 1 + 4*x^2/2! + 116*x^4/4! + 8764*x^6/6! + 1242356*x^8/8! + 283202524*x^10/10! + 94690800596*x^12/12! +...
such that A(x) = (sin(x) + sin(4*x)) / sin(5*x).
O.g.f.: F(x) = 1 + 4*x + 116*x^2 + 8764*x^3 + 1242356*x^4 + 283202524*x^5 + 94690800596*x^6 + 43653497804284*x^7 + 26538141745926836*x^8 +...
such that the o.g.f. can be expressed as the continued fraction:
F(x) = 1/(1 - 1*4*x/(1 - 5^2*x/(1 - 6*9*x/(1 - 10^2*x/(1 - 11*14*x/(1 - 15^2*x/(1 - 16*19*x/(1 - 20^2*x/(1 - 21*24*x/(1 - 25^2*x/(1 - 26*29*x/(1 - ...)))))))))))).
-
seq((-25)^n*euler(2*n, 1/5), n = 0..16); # Peter Luschny, Nov 26 2020
-
Table[(CoefficientList[Series[(Sin[x] + Sin[4*x]) / Sin[5*x], {x, 0, 40}], x]*Range[0, 40]!)[[2*n + 1]], {n, 0, 20}] (* Vaclav Kotesovec, Apr 30 2016 *)
With[{nmax = 60}, CoefficientList[Series[Cos[3*x/2]/Cos[5*x/2], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; ;; 2]] (* G. C. Greubel, Oct 11 2018 *)
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(X) + sin(4*X))/sin(5*X), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(X) + cos(4*X))/(1 + cos(5*X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(I*X) + exp(4*I*X))/(1 + exp(5*I*X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
A273031
Expansion of e.g.f.: (sin(x) + sin(6*x)) / sin(7*x), even-indexed terms only.
Original entry on oeis.org
1, 6, 330, 48726, 13534410, 6046913046, 3962771924490, 3580686141374166, 4266519857080266570, 6481738795978992136086, 12228451239686387772736650, 28048508112504152087554462806, 76867928701091608252297826870730, 248058932215537567368765344245378326, 931049990613171839116868739409352364810, 4021504762182514582910341826029900914866646
Offset: 0
E.g.f.: A(x) = 1 + 6*x^2/2! + 330*x^4/4! + 48726*x^6/6! + 13534410*x^8/8! + 6046913046*x^10/10! + 3962771924490*x^12/12! + 3580686141374166*x^14/14! +...
such that A(x) = (sin(x) + sin(6*x)) / sin(7*x).
O.g.f.: F(x) = 1 + 6*x + 330*x^2 + 48726*x^3 + 13534410*x^4 + 6046913046*x^5 + 3962771924490*x^6 + 3580686141374166*x^7 +...
such that the o.g.f. can be expressed as the continued fraction:
F(x) = 1/(1 - 1*6*x/(1 - 7^2*x/(1 - 8*13*x/(1 - 14^2*x/(1 - 15*20*x/(1 - 21^2*x/(1 - 22*27*x/(1 - 28^2*x/(1 - 29*34*x/(1 - 35^2*x/(1 - 36*41*x/(1 - ...)))))))))))).
-
seq((-49)^n*euler(2*n, 1/7), n = 0..15); # Peter Luschny, Nov 26 2020
-
With[{nn=30},Take[CoefficientList[Series[(Sin[x]+Sin[6x])/Sin[7x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Jul 08 2018 *)
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(1*X) + sin(6*X))/sin(7*X), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(1*X) + cos(6*X))/(1 + cos(7*X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(1*I*X) + exp(6*I*X))/(1 + exp(7*I*X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
A272468
E.g.f.: ( (sin(2*x) + sin(3*x)) / sin(5*x) )^(1/6).
Original entry on oeis.org
1, 1, 16, 861, 96151, 18222146, 5239250961, 2125867405481, 1156996954702696, 813362896424049741, 717389213154874345231, 775695142663748111834426, 1009031532010773852853587441, 1554520965241408817492939532161, 2799176143277347317623990785312576, 5825065298299069164298296125454811821, 13872866932424152546975929055708940259511, 37490505378893715802821349609594581921197906
Offset: 0
G.f.: A(x) = 1 + x^2/2! + 16*x^4/4! + 861*x^6/6! + 96151*x^8/8! + 18222146*x^10/10! + 5239250961*x^12/12! + 2125867405481*x^14/14! +...
RELATED SERIES.
The logarithm of the e.g.f. begins:
log(A(x)) = x^2/2! + 13*x^4/4! + 651*x^6/6! + 69173*x^8/8! + 12613931*x^10/10! + 3514607733*x^12/12! + 1388804117611*x^14/14! + 738755067184693*x^16/16! + 508990446726347691*x^18/18! + 440936448176697240053*x^20/20! +...
such that the coefficients of x^(2*n)/(2*n)! consist entirely of odd integers.
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( ((sin(2*X) + sin(3*X))/sin(5*X))^(1/6), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( ( (cos(2*X) + cos(3*X))/(1 + cos(5*X)) )^(1/6), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( ((exp(2*I*X) + exp(3*I*X))/(1 + exp(5*I*X)))^(1/6), 2*n)}
for(n=0, 20, print1(a(n), ", "))
A272481
E.g.f. A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2) represented as a triangle, read by rows, where row n lists of coefficients T(n,k) of x^(2*n)*y^k/n! in A(x,y), for k=0..2*n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 3, 1, 0, 0, 3, 15, 25, 15, 3, 0, 0, 17, 119, 329, 455, 329, 119, 17, 0, 0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0, 0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0, 0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0, 0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0
Offset: 0
E.g.f.: A(x,y) = 1 + x^2*(y)/2! + x^4*(y + 3*y^2 + y^3)/4! +
x^6*(3*y + 15*y^2 + 25*y^3 + 15*y^4 + 3*y^5)/6! +
x^8*(17*y + 119*y^2 + 329*y^3 + 455*y^4 + 329*y^5 + 119*y^6 + 17*y^7)/8! +
x^10*(155*y + 1395*y^2 + 5325*y^3 + 11235*y^4 + 14301*y^5 + 11235*y^6 + 5325*y^7 + 1395*y^8 + 155*y^9)/10! +
x^12*(2073*y + 22803*y^2 + 110605*y^3 + 311355*y^4 + 563013*y^5 + 683067*y^6 + 563013*y^7 + 311355*y^8 + 110605*y^9 + 22803*y^10 + 2073*y^11)/12! +...
where A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2).
This triangle of coefficients of x^(2*n)*y^k/(2*n)!, k=0..2*n, begins:
[1];
[0, 1, 0];
[0, 1, 3, 1, 0];
[0, 3, 15, 25, 15, 3, 0];
[0, 17, 119, 329, 455, 329, 119, 17, 0];
[0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0];
[0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0];
[0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0];
[0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0]; ...
-
{T(n,k) = my(X=x+x*O(x^(2*n))); (2*n)!*polcoeff(polcoeff( cos((X-x*y)/2)/cos((X+x*y)/2), 2*n,x), k,y)}
for(n=0,10, for(k=0,2*n, print1(T(n,k),", "));print(""))
A273032
E.g.f.: (sin(2*x) + sin(5*x)) / sin(7*x).
Original entry on oeis.org
1, 10, 590, 87730, 24386030, 10896056050, 7140660673070, 6452172716731570, 7688003030273049710, 11679689713099591922290, 22034907735675944799243950, 50541665200040978421599836210, 138511221399376147951707017623790, 446986750662532432703671725548281330, 1677694112006573410256120810193681597230, 7246501185695514998554969680297128881865650
Offset: 0
E.g.f.: A(x) = 1 + 10*x^2/2! + 590*x^4/4! + 87730*x^6/6! + 24386030*x^8/8! + 10896056050*x^10/10! + 7140660673070*x^12/12! +...
such that A(x) = (sin(2*x) + sin(5*x)) / sin(7*x).
O.g.f.: F(x) = 1 + 10*x + 590*x^2 + 87730*x^3 + 24386030*x^4 + 10896056050*x^5 + 7140660673070*x^6 + 6452172716731570*x^7 +...
such that the o.g.f. can be expressed as the continued fraction:
F(x) = 1/(1 - 2*5*x/(1 - 7^2*x/(1 - 9*12*x/(1 - 14^2*x/(1 - 16*19*x/(1 - 21^2*x/(1 - 23*26*x/(1 - 28^2*x/(1 - 30*33*x/(1 - 35^2*x/(1 - 37*40*x/(1 - ...)))))))))))).
-
With[{nn=30},Take[CoefficientList[Series[(Sin[2x]+Sin[5x])/Sin[7x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Jul 20 2018 *)
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(2*X) + sin(5*X))/sin(7*X), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(2*X) + cos(5*X))/(1 + cos(7*X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(2*I*X) + exp(5*I*X))/(1 + exp(7*I*X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
A273033
E.g.f.: (sin(3*x) + sin(4*x)) / sin(7*x).
Original entry on oeis.org
1, 12, 732, 109332, 30406812, 13587056052, 8904250650492, 8045727017033172, 9586782871360007772, 14564334832981893064692, 27477080512619965247054652, 63024425641459625896776174612, 172720667970739808701108304367132, 557383361208023769780400587942586932, 2092050338949043346342979863638489321212, 9036239176876728629700436615577988154925652
Offset: 0
E.g.f.: A(x) = 1 + 12*x^2/2! + 732*x^4/4! + 109332*x^6/6! + 30406812*x^8/8! + 13587056052*x^10/10! + 8904250650492*x^12/12! +...
such that A(x) = (sin(3*x) + sin(4*x)) / sin(7*x).
O.g.f.: F(x) = 1 + 12*x + 732*x^2 + 109332*x^3 + 30406812*x^4 + 13587056052*x^5 + 8904250650492*x^6 + 8045727017033172*x^7 +...
such that the o.g.f. can be expressed as the continued fraction:
F(x) = 1/(1 - 3*4*x/(1 - 7^2*x/(1 - 10*11*x/(1 - 14^2*x/(1 - 17*18*x/(1 - 21^2*x/(1 - 24*25*x/(1 - 28^2*x/(1 - 31*32*x/(1 - 35^2*x/(1 - 38*39*x/(1 - ...)))))))))))).
-
With[{nn=40},Take[CoefficientList[Series[(Sin[3x]+Sin[4x])/Sin[7x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Sep 23 2019 *)
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(3*X) + sin(4*X))/sin(7*X), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(3*X) + cos(4*X))/(1 + cos(7*X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(3*I*X) + exp(4*I*X))/(1 + exp(7*I*X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
Showing 1-6 of 6 results.
Comments