cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272514 Number of set partitions of [n] into two blocks with distinct sizes.

Original entry on oeis.org

3, 4, 15, 21, 63, 92, 255, 385, 1023, 1585, 4095, 6475, 16383, 26332, 65535, 106761, 262143, 431909, 1048575, 1744435, 4194303, 7036529, 16777215, 28354131, 67108863, 114159427, 268435455, 459312151, 1073741823, 1846943452, 4294967295, 7423131481, 17179869183
Offset: 3

Views

Author

Alois P. Heinz, May 01 2016

Keywords

Crossrefs

Column k=2 of A131632.

Programs

  • Magma
    [(&+[Binomial(n,j): j in [1..Floor((n-1)/2)]]): n in [3..40]]; // G. C. Greubel, Jul 14 2024
    
  • Maple
    b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n
          or t*(2*i+1-t)/2n, 0, b(n-i, i-1, t-1)*binomial(n,i))))
        end:
    a:= n-> b(n$2, 2):
    seq(a(n), n=3..40);
  • Mathematica
    Table[Sum[Binomial[n, i], {i, Floor[(n - 1)/2]}], {n, 3, 35}] (* Michael De Vlieger, Nov 15 2017 *)
  • SageMath
    def A272514(n): return sum( binomial(n,j) for j in range(1,1+((n-1)//2)))
    [A272514(n) for n in range(3,31)] # G. C. Greubel, Jul 14 2024

Formula

a(n) = n! * [x^n*y^2] Product_{n>=1} (1+y*x^n/n!).
a(n) = Sum_{i=1..floor((n-1)/2)} binomial(n,i). - Wesley Ivan Hurt, Nov 15 2017
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Dec 11 2020