A272514 Number of set partitions of [n] into two blocks with distinct sizes.
3, 4, 15, 21, 63, 92, 255, 385, 1023, 1585, 4095, 6475, 16383, 26332, 65535, 106761, 262143, 431909, 1048575, 1744435, 4194303, 7036529, 16777215, 28354131, 67108863, 114159427, 268435455, 459312151, 1073741823, 1846943452, 4294967295, 7423131481, 17179869183
Offset: 3
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Crossrefs
Column k=2 of A131632.
Programs
-
Magma
[(&+[Binomial(n,j): j in [1..Floor((n-1)/2)]]): n in [3..40]]; // G. C. Greubel, Jul 14 2024
-
Maple
b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n or t*(2*i+1-t)/2
n, 0, b(n-i, i-1, t-1)*binomial(n,i)))) end: a:= n-> b(n$2, 2): seq(a(n), n=3..40); -
Mathematica
Table[Sum[Binomial[n, i], {i, Floor[(n - 1)/2]}], {n, 3, 35}] (* Michael De Vlieger, Nov 15 2017 *)
-
SageMath
def A272514(n): return sum( binomial(n,j) for j in range(1,1+((n-1)//2))) [A272514(n) for n in range(3,31)] # G. C. Greubel, Jul 14 2024
Formula
a(n) = n! * [x^n*y^2] Product_{n>=1} (1+y*x^n/n!).
a(n) = Sum_{i=1..floor((n-1)/2)} binomial(n,i). - Wesley Ivan Hurt, Nov 15 2017
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Dec 11 2020