cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131632 Triangle T(n,k) read by rows = number of partitions of n-set into k blocks with distinct sizes, k = 1..A003056(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 15, 1, 21, 60, 1, 63, 105, 1, 92, 448, 1, 255, 2016, 1, 385, 4980, 12600, 1, 1023, 15675, 27720, 1, 1585, 61644, 138600, 1, 4095, 155155, 643500, 1, 6475, 482573, 4408404, 1, 16383, 1733550, 12687675, 37837800, 1, 26332, 4549808, 60780720
Offset: 1

Views

Author

Vladeta Jovovic, Sep 04 2007

Keywords

Comments

Row sums = A007837.
Sum k! * T(n,k) = A032011.
Sum k * T(n,k) = A131623. - Geoffrey Critzer, Aug 30 2012.
T(n,k) is also the number of words w of length n over a k-ary alphabet {a1,a2,...,ak} with #(w,a1) > #(w,a2) > ... > #(w,ak) > 0, where #(w,x) counts the letters x in word w. T(5,2) = 15: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, abbaa, baaaa, baaab, baaba, babaa, bbaaa. - Alois P. Heinz, Jun 21 2013

Examples

			Triangle T(n,k)begins:
  1;
  1;
  1,     3;
  1,     4;
  1,    15;
  1,    21,      60;
  1,    63,     105;
  1,    92,     448;
  1,   255,    2016;
  1,   385,    4980,    12600;
  1,  1023,   15675,    27720;
  1,  1585,   61644,   138600;
  1,  4095,  155155,   643500;
  1,  6475,  482573,  4408404;
  1, 16383, 1733550, 12687675, 37837800;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, v) option remember; `if`(t=1, 1/(n+v)!,
          add(b(n-j, j, t-1, v+1)/(j+v)!, j=i..n/t))
        end:
    T:= (n, k)->`if`(k*(k+1)/2>n, 0, n!*b(n-k*(k+1)/2, 0, k, 1)):
    seq(seq(T(n, k), k=1..floor(sqrt(2+2*n)-1/2)), n=1..20);
    # Alois P. Heinz, Jun 21 2013
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Sep 27 2019
  • Mathematica
    nn=10;p=Product[1+y x^i/i!,{i,1,nn}];Range[0,nn]! CoefficientList[ Series[p,{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, Aug 30 2012 *)

Formula

E.g.f.: Product_{n>=1} (1+y*x^n/n!).
T(A000217(n),n) = A022915(n). - Alois P. Heinz, Jul 03 2018

A028331 Elements to the right of the central elements of the even-Pascal triangle A028326 that are not 2.

Original entry on oeis.org

6, 8, 20, 10, 30, 12, 70, 42, 14, 112, 56, 16, 252, 168, 72, 18, 420, 240, 90, 20, 924, 660, 330, 110, 22, 1584, 990, 440, 132, 24, 3432, 2574, 1430, 572, 156, 26, 6006, 4004, 2002, 728, 182, 28, 12870, 10010, 6006, 2730, 910, 210, 30, 22880, 16016
Offset: 0

Views

Author

Keywords

Examples

			This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n):
  x;
  .,  .;
  .,  x,  .;
  .,  .,  6,  .;
  .,  .,  x,  8,  .;
  .,  .,  ., 20, 10,   .;
  .,  .,  .,  x, 30,  12,   .;
  .,  .,  .,  ., 70,  42,  14,    .;
  .,  .,  .,  .,  x, 112,  56,   16,   .;
  .,  .,  .,  .,  ., 252, 168,   72,  18,   .;
  .,  .,  .,  .,  .,   x, 420,  240,  90,  20,   .;
  .,  .,  .,  .,  .,   ., 924,  660, 330, 110,  22,  .;
  .,  .,  .,  .,  .,   .,   x, 1584, 990, 440, 132, 24, .;
As an irregular triangle:
    6;
    8;
   20,  10;
   30,  12;
   70,  42,  14;
  112,  56,  16;
  252, 168,  72,  18;
  420, 240,  90,  20;
  924, 660, 330, 110, 22;
		

Crossrefs

Programs

  • Magma
    [2*Binomial(n+3,k): k in [Floor((n+5)/2)..n+2], n in [0..12]]; // G. C. Greubel, Jul 14 2024
    
  • Mathematica
    Table[2*Binomial[n+3, k+2 +Floor[(n+1)/2]], {n,0,12}, {k,0,Floor[n/2] }]//Flatten (* G. C. Greubel, Jul 14 2024 *)
  • SageMath
    def A028326(n,k): return 2*binomial(n, k)
    flatten([[A028326(n+1,k) for k in range(((n+3)//2), n+1)] for n in range(21)]) # G. C. Greubel, Jul 14 2024

Formula

From G. C. Greubel, Jul 14 2024: (Start)
T(n, k) = 2*binomial(n+3, k+2 + floor((n+1)/2)).
Sum_{k=0..floor(n/2)} T(n, k) = A272514(n+3).
Sum_{k=0..n} (-1)^k*T(2*n, k) = 2*A286033(n+2).
Sum_{k=0..n} (-1)^k*T(2*n+1, k) = binomial(2*n+4, n+2) + 2*(-1)^n.
(End)

Extensions

More terms from James Sellers
Showing 1-2 of 2 results.