cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A178218 Numbers of the form 2k^2-2k+1 or 2k^2-1.

Original entry on oeis.org

1, 5, 7, 13, 17, 25, 31, 41, 49, 61, 71, 85, 97, 113, 127, 145, 161, 181, 199, 221, 241, 265, 287, 313, 337, 365, 391, 421, 449, 481, 511, 545, 577, 613, 647, 685, 721, 761, 799, 841, 881, 925, 967, 1013, 1057, 1105, 1151, 1201, 1249
Offset: 1

Views

Author

Eddie Gutierrez, Dec 19 2010

Keywords

Comments

Numbers which when squared are used as entries in magic squares. A sequence of numbers whose difference is an interleaved array consisting of 4,6,8,10,12,... and a second sequence 2,4,6,8,10,... . Each entry when squared produces an entry into a tuple used as the right diagonal in a magic square. The difference between square entries produces a third sequence 24,24,120,120,336,336,720,720,1320,1320,..., numbers divisible by 24 and generating the sequence of natural number squares.

Crossrefs

Programs

  • Magma
    I:=[1, 5, 7, 13]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..60]]; // Vincenzo Librandi, Jun 09 2012
    
  • Mathematica
    Join[{1}, Flatten[Table[{(n^2 + 1)/2, (n^2 + 2 n - 1)/2}, {n, 3, 50, 2}]]]
    Table[(2 n (n + 2) + 3 (-1)^n + 1)/4, {n, 49}] (* Bruno Berselli, Apr 04 2012 *)
    CoefficientList[Series[(1+3*x-3*x^2+x^3)/((1-x)^3*(1+x)),{x,0,60}],x] (* Vincenzo Librandi, Jun 09 2012 *)
    LinearRecurrence[{2,0,-2,1},{1,5,7,13},60] (* Harvey P. Dale, Jun 09 2019 *)
  • Maxima
    A178218[1]:1$
    A178218[n]:=n*(n+1)-A178218[n-1]$
    makelist(A178218[n],n,1,30); /* Martin Ettl, Nov 01 2012 */
  • Python
    a = 1
    for n in range(2,77):
        print(a, end=",")
        a = n*(n+1) - a
    # Alex Ratushnyak, Aug 03 2012
    

Formula

From Colin Barker, Apr 04 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1+3*x-3*x^2+x^3)/((1-x)^3*(1+x)). (End)
a(n) = (2n(n+2)+3(-1)^n+1)/4. - Bruno Berselli, Apr 04 2012
From Philippe Deléham, Jun 08 2012: (Start)
2*a(2n)^2 = a(2n-1)^2 + a(2n+1)^2.
(a(2n)+a(2n-1))*A028242(2n) = (a(2n)+a(2n+1))*A028242(2n+1). (End)
a(1)=1, a(n) = n*(n+1) - a(n-1). - Alex Ratushnyak, Aug 03 2012
E.g.f.: ((x^2 + 3*x + 2)*cosh(x) + (x^2 + 3*x - 1)*sinh(x) - 2)/2. - Stefano Spezia, Feb 22 2024

A273187 a(n) is the third number in a triple consisting of 3 numbers, which when squared are part of a right diagonal of magic square of squares.

Original entry on oeis.org

99, 449, 2499, 14449, 84099, 490049, 2856099, 16646449, 97022499, 565488449, 3295908099, 19209960049, 111963852099, 652573152449, 3803475062499, 22168277222449, 129206188272099, 753068852410049, 4389206926188099, 25582172704718449, 149103829302122499
Offset: 0

Views

Author

Eddie Gutierrez, May 17 2016

Keywords

Examples

			a(2)= 449*6 - (99 + 96)= 2499;
a(3)= 2499*6 - (449 + 96)= 14449.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(99 - 244 x + 49 x^2)/((1 - x) (1 - 6 x + x^2)), {x, 0, 20}], x] (* Michael De Vlieger, May 20 2016 *)
  • PARI
    Vec((99-244*x+49*x^2)/((1-x)*(1-6*x+x^2)) + O(x^50)) \\ Colin Barker, May 18 2016

Formula

a(0)= 99, a(1)= 449, a(n+1)= a(n)*6 - a(n-1) - k where k=96.
From Colin Barker, May 18 2016: (Start)
a(n) = (24+25/2*(3-2*sqrt(2))^(1+n)+25/2*(3+2*sqrt(2))^(1+n)).
a(n) = 7*a(n-1)-7*a(n-2)+a(n-3) for n>2.
G.f.: (99-244*x+49*x^2) / ((1-x)*(1-6*x+x^2)).
(End)
a(n) = 24 + 25*A001541(n+1). - R. J. Mathar, Jun 07 2016

A273189 a(n) is the third number in a triple consisting of 3 numbers, which when squared are part of a right diagonal of a magic square of squares.

Original entry on oeis.org

51, 401, 2451, 14401, 84051, 490001, 2856051, 16646401, 97022451, 565488401, 3295908051, 19209960001, 111963852051, 652573152401, 3803475062451, 22168277222401, 129206188272051, 753068852410001, 4389206926188051, 25582172704718401, 149103829302122451
Offset: 0

Views

Author

Eddie Gutierrez, May 17 2016

Keywords

Comments

The multiplying factor 6 (in the recursion formulas below) appears to come from the ratio of b(1)/b(0) of the sequence. Each of the lines of tables (V vs VII) or (VI vs VIII) in oddwheel.com/ImaginaryB.html generates this factor.
k is obtained from the difference of the offsets of two relate sequences. this one, (II), starting at 51 and a second, (I), at 99 (to be submitted separately). Thus, k =[Ic(n)- IIc(n)]*2. When n=0, Ic(0)=99 and IIc(0)=51 giving the value for k of (99-51)*2=96. Furthermore, k is the same constant number for any value of n.
The differences between number in the sequence are identical in both of the related sequences.

Examples

			a(2)= 401*6 - (51 - 96)= 2451;
a(3)= 2451*6 - (401 - 96)= 14401;
a(4)= 14401*6 - (2451 - 96)= 84051.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(51 + 44 x + x^2)/((1 - x) (1 - 6 x + x^2)), {x, 0, 20}], x] (* Michael De Vlieger, May 18 2016 *)
    LinearRecurrence[{7,-7,1},{51,401,2451},30] (* Harvey P. Dale, Feb 21 2020 *)
  • PARI
    Vec((51+44*x+x^2)/((1-x)*(1-6*x+x^2)) + O(x^50)) \\ Colin Barker, May 18 2016

Formula

a(0)= 51, a(1)= 401, a(n+1)= a(n)*6 - a(n-1) + k where k=96.
From Colin Barker, May 18 2016: (Start)
a(n) = (-24+25/2*(3-2*sqrt(2))^(1+n)+25/2*(3+2*sqrt(2))^(1+n)).
a(n) = 7*a(n-1)-7*a(n-2)+a(n-3) for n>2.
G.f.: (51+44*x+x^2) / ((1-x)*(1-6*x+x^2)).
(End)

Extensions

More terms from Colin Barker, May 18 2016
Showing 1-3 of 3 results.