A178218 Numbers of the form 2k^2-2k+1 or 2k^2-1.
1, 5, 7, 13, 17, 25, 31, 41, 49, 61, 71, 85, 97, 113, 127, 145, 161, 181, 199, 221, 241, 265, 287, 313, 337, 365, 391, 421, 449, 481, 511, 545, 577, 613, 647, 685, 721, 761, 799, 841, 881, 925, 967, 1013, 1057, 1105, 1151, 1201, 1249
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- T. C. Brown, A. R. Freedman, and P. JS. Shiue, Progressions of squares, The Australasian Journal of Combinatorics, Volume 27 (2003), p.187.
- Eddie Gutierrez, New Sequence of Squares
- Eddie Gutierrez, The Generation of New Sequences (Part G)
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
I:=[1, 5, 7, 13]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..60]]; // Vincenzo Librandi, Jun 09 2012
-
Mathematica
Join[{1}, Flatten[Table[{(n^2 + 1)/2, (n^2 + 2 n - 1)/2}, {n, 3, 50, 2}]]] Table[(2 n (n + 2) + 3 (-1)^n + 1)/4, {n, 49}] (* Bruno Berselli, Apr 04 2012 *) CoefficientList[Series[(1+3*x-3*x^2+x^3)/((1-x)^3*(1+x)),{x,0,60}],x] (* Vincenzo Librandi, Jun 09 2012 *) LinearRecurrence[{2,0,-2,1},{1,5,7,13},60] (* Harvey P. Dale, Jun 09 2019 *)
-
Maxima
A178218[1]:1$ A178218[n]:=n*(n+1)-A178218[n-1]$ makelist(A178218[n],n,1,30); /* Martin Ettl, Nov 01 2012 */
-
Python
a = 1 for n in range(2,77): print(a, end=",") a = n*(n+1) - a # Alex Ratushnyak, Aug 03 2012
Formula
From Colin Barker, Apr 04 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1+3*x-3*x^2+x^3)/((1-x)^3*(1+x)). (End)
a(n) = (2n(n+2)+3(-1)^n+1)/4. - Bruno Berselli, Apr 04 2012
From Philippe Deléham, Jun 08 2012: (Start)
2*a(2n)^2 = a(2n-1)^2 + a(2n+1)^2.
a(1)=1, a(n) = n*(n+1) - a(n-1). - Alex Ratushnyak, Aug 03 2012
E.g.f.: ((x^2 + 3*x + 2)*cosh(x) + (x^2 + 3*x - 1)*sinh(x) - 2)/2. - Stefano Spezia, Feb 22 2024
Comments