A273374 Squares ending in digit 9.
9, 49, 169, 289, 529, 729, 1089, 1369, 1849, 2209, 2809, 3249, 3969, 4489, 5329, 5929, 6889, 7569, 8649, 9409, 10609, 11449, 12769, 13689, 15129, 16129, 17689, 18769, 20449, 21609, 23409, 24649, 26569, 27889, 29929, 31329, 33489, 34969, 37249, 38809
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
/* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 9];
-
Magma
[6+(50*(n-1)*n-5*(2*n-1)*(-1)^n+1)/2: n in [1..50]];
-
Mathematica
Table[6 + (50 (n - 1) n - 5 (2 n - 1) (-1)^n + 1)/2, {n, 1, 50}]
-
PARI
a(n)=(5*n-3+n%2)^2 \\ Charles R Greathouse IV, Nov 03 2021
Formula
G.f.: x*(9 + 40*x + 102*x^2 + 40*x^3 + 9*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 6 + (50*(n-1)*n - 5*(2*n-1)*(-1)^n + 1)/2.
a(n) = A063226(n)^2. - Seiichi Manyama, May 25 2016
Sum_{n>=1} 1/a(n) = Pi^2*(3-sqrt(5))/50. - Amiram Eldar, Feb 16 2023
Extensions
Corrected and extended by Bruno Berselli, May 21 2016
Comments