cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273375 Squares ending in digit 4.

Original entry on oeis.org

4, 64, 144, 324, 484, 784, 1024, 1444, 1764, 2304, 2704, 3364, 3844, 4624, 5184, 6084, 6724, 7744, 8464, 9604, 10404, 11664, 12544, 13924, 14884, 16384, 17424, 19044, 20164, 21904, 23104, 24964, 26244, 28224, 29584, 31684, 33124, 35344, 36864, 39204, 40804, 43264
Offset: 1

Views

Author

Vincenzo Librandi, May 24 2016

Keywords

Crossrefs

Cf. A017317 (numbers ending in 4), A017319 (cubes ending in 4).
Cf. similar sequences listed in A273373.

Programs

  • Magma
    /* By definition: */ [n^2: n in [0..200] | Modexp(n, 2, 10) eq 4];
    
  • Magma
    [(10*n+(-1)^n-5)^2/4: n in [1..50]];
  • Mathematica
    Table[(10 n + (-1)^n - 5)^2/4, {n, 1, 50}] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {4, 64, 144, 324, 484}, 50]
    Select[Range[200]^2,Mod[#,10]==4&] (* or *) LinearRecurrence[{1,1,-1},{2,8,12},40]^2(* Harvey P. Dale, Aug 06 2017 *)

Formula

G.f.: 4*x*(1 + 15*x + 18*x^2 + 15*x^3 + x^4) /((1+x)^2*(1-x)^3).
a(n) = 4*A047209(n)^2 = (10*n + (-1)^n - 5)^2/4.
Sum_{n>=1} 1/a(n) = 2*Pi^2/(25*(5-sqrt(5))). - Amiram Eldar, Feb 16 2023
E.g.f.: (4 - 5*x + 25*x^2)*cosh(x) + (9 + 5*x + 25*x^2)*sinh(x) - 4. - Stefano Spezia, Feb 21 2025

Extensions

Edited by Bruno Berselli, May 24 2016