cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A273633 Decimal expansion of (Pi/(6*sqrt(3)))^(1/3), the sphericity of the tetrahedron.

Original entry on oeis.org

6, 7, 1, 1, 3, 9, 2, 9, 1, 3, 1, 2, 8, 5, 0, 3, 6, 9, 4, 9, 2, 0, 2, 9, 0, 6, 1, 6, 6, 4, 4, 4, 5, 1, 3, 1, 7, 5, 7, 9, 1, 6, 8, 4, 6, 2, 0, 7, 4, 7, 5, 1, 2, 4, 2, 1, 3, 8, 9, 9, 7, 1, 2, 6, 7, 8, 2, 0, 5, 8, 2, 9, 1, 3, 6, 9, 7, 5, 9, 4, 5, 1, 6, 2, 4, 0
Offset: 0

Views

Author

Felix Fröhlich, May 27 2016

Keywords

Examples

			0.67113929131285036949202906166444513175791684620747512421389971...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[Pi/(6*Sqrt[3]), 3], 10, 120][[1]] (* Amiram Eldar, Jun 29 2023 *)
  • PARI
    default(realprecision, 50080); my(x=(Pi/(6*sqrt(3)))^(1/3)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", "))

Formula

Equals cube root of A093766. - Michel Marcus, May 27 2016

Extensions

Definition corrected by Georg Fischer, Jul 12 2021

A273637 Decimal expansion of ((Pi*(3+sqrt(5))^2)/(60*sqrt(3)))^(1/3), the sphericity of the icosahedron.

Original entry on oeis.org

9, 3, 9, 3, 2, 5, 6, 5, 1, 5, 6, 7, 6, 3, 6, 1, 5, 9, 4, 1, 6, 1, 0, 1, 4, 3, 2, 4, 1, 4, 6, 6, 1, 3, 6, 6, 1, 4, 2, 8, 8, 8, 6, 4, 1, 7, 0, 4, 7, 9, 1, 6, 1, 0, 9, 3, 2, 9, 5, 9, 1, 8, 7, 2, 3, 5, 7, 8, 7, 3, 7, 9, 0, 3, 3, 9, 5, 2, 4, 5, 3, 9, 5, 2, 5, 3
Offset: 0

Views

Author

Felix Fröhlich, May 27 2016

Keywords

Examples

			0.93932565156763615941610143241466136614288864170479161093295918...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[(Pi (3+Sqrt[5])^2)/(60Sqrt[3]),3],10,120][[1]] (* Harvey P. Dale, Nov 16 2022 *)
  • PARI
    default(realprecision, 50080); my(x=((Pi*(3+sqrt(5))^2)/(60*sqrt(3)))^(1/3)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", "))

A273635 Decimal expansion of (Pi/(3*sqrt(3)))^(1/3), the sphericity of the octahedron.

Original entry on oeis.org

8, 4, 5, 5, 8, 2, 5, 2, 0, 5, 3, 6, 5, 8, 7, 5, 6, 6, 3, 2, 7, 1, 8, 8, 1, 5, 9, 7, 7, 3, 0, 6, 6, 2, 5, 2, 5, 0, 2, 0, 0, 6, 6, 8, 2, 3, 4, 0, 8, 5, 9, 5, 9, 8, 0, 0, 6, 9, 9, 6, 1, 1, 2, 7, 1, 0, 3, 1, 1, 8, 7, 5, 0, 8, 7, 4, 5, 5, 8, 8, 3, 0, 2, 6, 7, 4
Offset: 0

Views

Author

Felix Fröhlich, May 27 2016

Keywords

Examples

			0.84558252053658756632718815977306625250200668234085959800699611...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[Pi/(3Sqrt[3]),3],10,120][[1]] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    default(realprecision, 50080); my(x=(Pi/(3*sqrt(3)))^(1/3)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", "))

Formula

Equals cube root of A093602. - Michel Marcus, May 27 2016

Extensions

Definition corrected by Georg Fischer, Jul 12 2021

A273636 Decimal expansion of ((Pi*(15+7*sqrt(5))^2)/(12*(25+10*sqrt(5))^(3/2)))^(1/3), the sphericity of the dodecahedron.

Original entry on oeis.org

9, 1, 0, 4, 5, 3, 1, 8, 1, 4, 0, 9, 2, 4, 2, 2, 7, 9, 1, 6, 9, 5, 3, 8, 0, 3, 4, 4, 6, 6, 2, 5, 8, 6, 2, 8, 5, 7, 4, 5, 8, 6, 5, 8, 0, 2, 9, 4, 3, 3, 8, 0, 1, 2, 6, 5, 0, 6, 1, 5, 5, 4, 9, 9, 2, 1, 3, 6, 4, 6, 6, 2, 5, 0, 0, 5, 2, 6, 4, 8, 2, 1, 0, 7, 1, 1
Offset: 0

Views

Author

Felix Fröhlich, May 27 2016

Keywords

Examples

			0.91045318140924227916953803446625862857458658029433801265061554...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[((Pi*(15 + 7*Sqrt[5])^2)/(12*(25 + 10*Sqrt[5])^(3/2)))^(1/3), 10, 120][[1]] (* Amiram Eldar, Jun 29 2023 *)
  • PARI
    default(realprecision, 50080); my(x=((Pi*(15+7*sqrt(5))^2)/(12*(25+10*sqrt(5))^(3/2)))^(1/3)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", "))
Showing 1-4 of 4 results.