A273870 Numbers m such that 4^(m-1) == 1 (mod (m-1)^2 + 1).
1, 3, 5, 17, 217, 257, 387, 8209, 20137, 37025, 59141, 65537, 283801, 649801, 1382401, 373164545, 535019101, 2453039425, 4294967297
Offset: 1
Examples
5 is a term because 4^(5-1) == 1 (mod (5-1)^2+1), i.e., 255 == 0 (mod 17).
Crossrefs
Programs
-
Magma
[n: n in [1..100000] | (4^(n-1)-1) mod ((n-1)^2+1) eq 0];
-
PARI
isok(n) = Mod(4, (n-1)^2+1)^(n-1) == 1; \\ Michel Marcus, Jun 02 2016
Formula
a(n) = sqrt(A273999(n)-1) + 1. - Jinyuan Wang, Feb 24 2020
Extensions
a(14)-a(15) from Michel Marcus, Jun 02 2016
Edited by Max Alekseyev, Apr 30 2018
a(16)-a(19) from Jinyuan Wang, Feb 24 2020
Comments