cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A274513 a(n) is the only number m such that 11^(2^m) + 1 is divisible by A273949(n).

Original entry on oeis.org

0, 3, 1, 5, 5, 2, 7, 4, 15, 14, 3, 8, 19, 11, 10, 24, 27, 8, 19, 23, 7, 16, 31, 35, 4, 29, 28, 11, 11, 28, 35
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 25 2016

Keywords

Crossrefs

Cf. A273949.

Programs

  • PARI
    forstep(p=3, 10^15, 2, if(!Mod(p, 11)==0, if(isprime(p), o=znorder(Mod(11, p)); x=ispower(2*o); if(2^(x-1)==o, print1(x-2, ", ")))));

A273950 Prime factors of generalized Fermat numbers of the form 12^(2^m) + 1 with m >= 0.

Original entry on oeis.org

5, 13, 17, 29, 89, 97, 233, 257, 769, 36097, 40961, 65537, 81281, 153953, 163841, 260753, 1724417, 4550657, 5767169, 8253953, 11304961, 13631489, 21495809, 69619841, 77651969, 147849217, 158334977, 159522817, 1711276033, 6528575489, 27286044673, 52613349377
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Primes p such that the multiplicative order of 12 (mod p) is a power of 2.

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A152585, A268660, A268664, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273948 (base 7), A273949 (base 11).

Programs

  • Mathematica
    Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[12, #]] &]

A273945 Odd prime factors of generalized Fermat numbers of the form 3^(2^m) + 1 with m >= 0.

Original entry on oeis.org

5, 17, 41, 193, 257, 12289, 59393, 65537, 275201, 786433, 790529, 8972801, 13631489, 21523361, 134382593, 155189249, 448524289, 524455937, 847036417, 3221225473, 12348030977, 22320686081, 77309411329, 206158430209, 4638564679681, 6597069766657, 12079910333441
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Odd primes p such that the multiplicative order of 3 (mod p) is a power of 2.

Crossrefs

Cf. A023394, A059919, A072982, A268657, A268661, A273946 (base 5), A273947 (base 6), A273948 (base 7), A273949 (base 11), A273950 (base 12).

Programs

  • Mathematica
    Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[3, #]] &]

A273946 Odd prime factors of generalized Fermat numbers of the form 5^(2^m) + 1 with m >= 0.

Original entry on oeis.org

3, 13, 17, 257, 313, 641, 769, 2593, 11489, 19457, 65537, 163841, 786433, 1503233, 1655809, 7340033, 14155777, 18395137, 23606273, 29423041, 39714817, 75068993, 167772161, 2483027969, 4643094529, 6616514561, 47148957697, 241931001601, 2748779069441
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Odd primes p such that the multiplicative order of 5 (mod p) is a power of 2.

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A199591, A268658, A268662, A273945 (base 3), A273947 (base 6), A273948 (base 7), A273949 (base 11), A273950 (base 12).

Programs

  • Mathematica
    Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[5, #]] &]

A273947 Prime factors of generalized Fermat numbers of the form 6^(2^m) + 1 with m >= 0.

Original entry on oeis.org

7, 17, 37, 257, 353, 1297, 1697, 2753, 18433, 65537, 80897, 98801, 145601, 763649, 3360769, 4709377, 13631489, 50307329, 376037377, 2483027969, 3191106049, 4926056449, 51808043009, 152605556737, 916326983681, 1268357529601, 6597069766657, 40711978221569
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Primes p other than 5 such that the multiplicative order of 6 (mod p) is a power of 2.

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A078303, A268663, A273945 (base 3), A273946 (base 5), A273948 (base 7), A273949 (base 11), A273950 (base 12).

Programs

  • Mathematica
    Select[Prime@Range[4, 10^5], IntegerQ@Log[2, MultiplicativeOrder[6, #]] &]

A273948 Odd prime factors of generalized Fermat numbers of the form 7^(2^m) + 1 with m >= 0.

Original entry on oeis.org

5, 17, 257, 353, 769, 1201, 12289, 13313, 35969, 65537, 114689, 163841, 169553, 7699649, 9379841, 11886593, 28667393, 64749569, 70254593, 134818753, 197231873, 4643094529, 19847446529, 47072139617, 206158430209, 452850614273, 531968664833, 943558259713
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Odd primes p other than 3 such that the multiplicative order of 7 (mod p) is a power of 2.
From Robert Israel, Jun 16 2016: (Start)
If p is in the sequence, then for each m either p | 7^(2^k)+1 for some k < m or 2^m | p-1. Thus all members except 5, 17, 353, 1201, 169553, 7699649, 134818753, 47072139617 are congruent to 1 mod 2^7.
The intersection of this sequence and A019337 is A019434 minus {3}. (End)

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A078304, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273949 (base 11), A273950 (base 12).

Programs

  • Maple
    filter:= proc(t)
      if not isprime(t) then return false fi;
      7 &^ (2^padic:-ordp(t-1,2)) mod t = 1
    end proc:
    select(filter, [seq(i,i=5..10^6,2)]); # Robert Israel, Jun 16 2016
  • Mathematica
    Select[Prime@Range[3, 10^5], IntegerQ@Log[2, MultiplicativeOrder[7, #]] &]

A275382 Number of odd prime factors (with multiplicity) of generalized Fermat number 11^(2^n) + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 6
Offset: 0

Views

Author

Arkadiusz Wesolowski, Jul 25 2016

Keywords

Examples

			b(n) = (11^(2^n) + 1)/2.
Complete Factorizations
b(0) = 2*3
b(1) = 61
b(2) = 7321
b(3) = 17*6304673
b(4) = 51329*447600088289
b(5) = 193*257*21283620033217629539178799361
b(6) = 316955440822738177*P49
b(7) = 15361*111489577217*574341646346402207998363393*
       4018529583345312964042058778793458689*P55
b(8) = 15190529*4696846849*19618834249745000485889*
       4393553986026616439660661873903822389581313*
       290103547098489711747952055517085778590240759297*P138
		

Crossrefs

Programs

  • PARI
    a001222(n) = bigomega(n)
    a199592(n) = 11^(2^n)+1
    a(n) = if(n==0, 1, a001222(a199592(n))-1) \\ Felix Fröhlich, Jul 25 2016

Formula

a(n) = A001222(A199592(n)) - 1 for n > 0. - Felix Fröhlich, Jul 25 2016

Extensions

a(8) was found in 2006 by Bruce Dodson
Showing 1-7 of 7 results.