cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274105 Triangle read by rows: T(n,k) = number of configurations of k nonattacking bishops on the black squares of an n X n chessboard (0 <= k <= n - [n>1]).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 5, 4, 1, 8, 14, 4, 1, 13, 46, 46, 8, 1, 18, 98, 184, 100, 8, 1, 25, 206, 674, 836, 308, 16, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 41, 612, 4196, 13756, 20476, 11896, 1912, 32, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 61, 1440, 16940, 106772, 361780, 629336, 506600, 154256, 11600, 64
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2016

Keywords

Comments

Rows give the coefficients of the independence polynomial of the n X n black bishop graph. - Eric W. Weisstein, Jun 26 2017

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2;
  1,  5,   4;
  1,  8,  14,      4;
  1, 13,  46,     46,      8;
  1, 18,  98,    184,    100,      8;
  1, 25,  206,   674,    836,    308,     16;
  1, 32,  356,  1704,   3532,   2816,    632,     16;
  1, 41,  612,  4196,  13756,  20476,  11896,   1912,     32;
  1, 50,  940,  8480,  38932,  89256,  93800,  37600,   3856,    32;
  1, 61, 1440, 16940, 106772, 361780, 629336, 506600, 154256, 11600, 64;
  ...
Corresponding independence polynomials:
  1, (empty graph)
  1+x, (K_1)
  1+2*x, (P_2 = K_2)
  1+5*x+4*x^2, (butterfly graph)
  1+8*x+14*x^2+4*x^3,
  ...
		

Crossrefs

Alternate rows give A088960.
Row sums are A216332(n+1).
Cf. A274106 (white squares), A288183, A201862, A002465.

Programs

  • Maple
    with(combinat); with(gfun);
    T:=n->add(stirling2(n+1,n+1-k)*x^k, k=0..n);
    # bishops on black squares
    bish:=proc(n) local m,k,i,j,t1,t2; global T;
    if n<2 then return [1$(n+1)] fi;
    if (n mod 2) = 0 then m:=n/2;
    t1:=add(binomial(m,k)*T(2*m-1-k)*x^k, k=0..m);
    else
    m:=(n-1)/2;
    t1:=add(binomial(m+1,k)*T(2*m-k)*x^k, k=0..m+1);
    fi;
    seriestolist(series(t1,x,2*n+1));
    end;
    for n from 0 to 12 do lprint(bish(n)); od:
    # second Maple program:
    T:= (n,k)-> add(binomial(ceil(n/2),j)*Stirling2(n-j,n-k),j=0..k):
    seq(seq(T(n,k), k=0..n-`if`(n>1,1,0)), n=0..11);  # Alois P. Heinz, Dec 01 2024
  • Mathematica
    CoefficientList[Table[Sum[x^n Binomial[Ceiling[n/2], k] BellB[n - k, 1/x], {k, 0, Ceiling[n/2]}], {n, 10}], x] (* Eric W. Weisstein, Jun 26 2017 *)
  • SageMath
    def stirling2_negativek(n, k):
      if k < 0: return 0
      else: return stirling_number2(n, k)
    print([sum([binomial(ceil(n/2), l)*stirling2_negativek(n-l, n-k) for l in [0..k]]) for n in [0..10] for k in [0..n-1+kronecker_delta(n,1)+kronecker_delta(n,0)]]) # Eder G. Santos, Dec 01 2024

Formula

From Eder G. Santos, Dec 01 2024: (Start)
T(n,k) = Sum_{j=0..k} binomial(ceiling(n/2),j) * Stirling2(n-j,n-k).
T(n,k) = T(n-1,k) + (n-k+A000035(n)) * T(n-1,k-1), T(n,0) = 1, T(0,k) = delta(k,0). (End)

Extensions

T(0,0) prepended by Eder G. Santos, Dec 01 2024