cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274248 Row sums of A273751.

Original entry on oeis.org

1, 5, 16, 37, 72, 124, 197, 294, 419, 575, 766, 995, 1266, 1582, 1947, 2364, 2837, 3369, 3964, 4625, 5356, 6160, 7041, 8002, 9047, 10179, 11402, 12719, 14134, 15650, 17271, 19000, 20841, 22797, 24872, 27069, 29392, 31844, 34429, 37150, 40011, 43015, 46166
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A002623, A173196 (same recurrence), A273751.

Programs

  • Magma
    [(n*(20-6*n+28*n^2) + 3*(1-(-1)^n))/48: n in [1..40]]; // G. C. Greubel, Oct 19 2023
    
  • Mathematica
    (* First program *)
    T[n_, k_]:= T[n, k]= Which[k==n, n(n-1) + 1, k==n-1, (n-1)^2 + 1, k==1, n + T[n-2, 1], 1 < k < n-1, T[n-1, k+1] + 1, True, 0];
    a[n_]:= Sum[T[n, k], {k, 1, n}];
    Array[a, 40]
    (* second program: *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {1, 5, 16, 37, 72}, 50] (* Vincenzo Librandi, Jun 16 2016 *)
  • SageMath
    [(n*(20-6*n+28*n^2) + 6*(n%2))/48 for n in range(1,41)] # G. C. Greubel, Oct 19 2023

Formula

a(n) = (14*n^3 - 3*n^2 + 10*n + 3*mod(n, 2))/24.
G.f.: x*(1 + 2*x + 3*x^2 + x^3)/((1 - x)^4*(1 + x)). - Ilya Gutkovskiy, Jun 17 2016
E.g.f.: (1/48)*( -3*exp(-x) + (3 + 42*x + 78*x^2 + 28*x^3)*exp(x) ). - G. C. Greubel, Oct 19 2023