A274757 Numbers k such that 6*k+1 is a triangular number (A000217).
0, 9, 15, 42, 54, 99, 117, 180, 204, 285, 315, 414, 450, 567, 609, 744, 792, 945, 999, 1170, 1230, 1419, 1485, 1692, 1764, 1989, 2067, 2310, 2394, 2655, 2745, 3024, 3120, 3417, 3519, 3834, 3942, 4275, 4389, 4740, 4860, 5229, 5355, 5742, 5874, 6279, 6417
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Mathematica
Table[3 (2 n - 1) (2 n + (-1)^n - 1)/4, {n, 1, 60}] (* Bruno Berselli, Jul 08 2016 *) LinearRecurrence[{1,2,-2,-1,1},{0,9,15,42,54},50] (* Harvey P. Dale, Apr 13 2025 *)
-
PARI
isok(n) = ispolygonal(6*n+1, 3)
-
PARI
select(n->ispolygonal(6*n+1, 3), vector(7000, n, n-1))
-
PARI
concat(0, Vec(3*x^2*(3+2*x+3*x^2)/((1-x)^3*(1+x)^2) + O(x^60)))
Formula
G.f.: 3*x^2*(3 + 2*x + 3*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = 3*(2*n - 1)*(2*n + (-1)^n - 1)/4. Therefore:
a(n) = 3*n*(2*n - 1)/2 for n even,
a(n) = 3*(n-1)*(2*n - 1)/2 for n odd.
Comments