cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274757 Numbers k such that 6*k+1 is a triangular number (A000217).

Original entry on oeis.org

0, 9, 15, 42, 54, 99, 117, 180, 204, 285, 315, 414, 450, 567, 609, 744, 792, 945, 999, 1170, 1230, 1419, 1485, 1692, 1764, 1989, 2067, 2310, 2394, 2655, 2745, 3024, 3120, 3417, 3519, 3834, 3942, 4275, 4389, 4740, 4860, 5229, 5355, 5742, 5874, 6279, 6417
Offset: 1

Views

Author

Colin Barker, Jul 04 2016

Keywords

Comments

Numbers of the type floor(3*m*(m+1)/4) for which floor(3*m*(m+1)/4) = 3*floor(m*(m+1)/4). A014601 lists the values of m. - Bruno Berselli, Jan 13 2017
Numbers of the form 3*k*(4*k + 1) for k in Z. - Peter Bala, Nov 21 2024

Crossrefs

Cf. A000096 (k+1), A074377 (2*k+1), A045943 (3*k+1), A274681 (4*k+1), A085787 (5*k+1).
Cf. similar sequences listed in A274830.

Programs

  • Mathematica
    Table[3 (2 n - 1) (2 n + (-1)^n - 1)/4, {n, 1, 60}] (* Bruno Berselli, Jul 08 2016 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,9,15,42,54},50] (* Harvey P. Dale, Apr 13 2025 *)
  • PARI
    isok(n) = ispolygonal(6*n+1, 3)
    
  • PARI
    select(n->ispolygonal(6*n+1, 3), vector(7000, n, n-1))
    
  • PARI
    concat(0, Vec(3*x^2*(3+2*x+3*x^2)/((1-x)^3*(1+x)^2) + O(x^60)))

Formula

G.f.: 3*x^2*(3 + 2*x + 3*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = 3*(2*n - 1)*(2*n + (-1)^n - 1)/4. Therefore:
a(n) = 3*n*(2*n - 1)/2 for n even,
a(n) = 3*(n-1)*(2*n - 1)/2 for n odd.