cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A074378 Even triangular numbers halved.

Original entry on oeis.org

0, 3, 5, 14, 18, 33, 39, 60, 68, 95, 105, 138, 150, 189, 203, 248, 264, 315, 333, 390, 410, 473, 495, 564, 588, 663, 689, 770, 798, 885, 915, 1008, 1040, 1139, 1173, 1278, 1314, 1425, 1463, 1580, 1620, 1743, 1785, 1914, 1958, 2093, 2139, 2280, 2328, 2475
Offset: 0

Views

Author

W. Neville Holmes, Sep 04 2002

Keywords

Comments

Set of integers k such that k + (1 + 2 + 3 + 4 + ... + x) = 3*k, where x is sufficiently large. For example, 203 is a term because 203 + (1 + 2 + 3 + 4 + ... +28) = 609 and 609 = 3*203. - Gil Broussard, Sep 01 2008
Set of all m such that 16*m+1 is a perfect square. - Gary Detlefs, Feb 21 2010
Integers of the form Sum_{k=0..n} k/2. - Arkadiusz Wesolowski, Feb 07 2012
Numbers of the form h*(4*h + 1) for h = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018
Numbers whose distance to nearest square equals their distance to nearest oblong; that is, numbers k such that A053188(k) = A053615(k). - Lamine Ngom, Oct 27 2020
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-3))*(1 + q^(8*n-5)) = 1 + q^3 + q^5 + q^14 + q^18 + .... - Peter Bala, Dec 30 2024

Crossrefs

Cf. A010709, A047522. [Vincenzo Librandi, Feb 14 2009]
Cf. A266883 (numbers n such that 16*n-15 is a square).

Programs

  • Magma
    f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..25]]; // Bruno Berselli, Nov 13 2012
  • Maple
    a:=n->(2*n+1)*floor((n+1)/2): seq(a(n),n=0..50); # Muniru A Asiru, Feb 01 2019
  • Mathematica
    1/2 * Select[PolygonalNumber@ Range[0, 100], EvenQ] (* Michael De Vlieger, Jun 01 2017, Version 10.4 *)
    Select[Accumulate[Range[0,100]],EvenQ]/2 (* Harvey P. Dale, Feb 15 2025 *)
  • PARI
    a(n)=(2*n+1)*(n-n\2)
    

Formula

Sum_{n>=0} q^a(n) = (Prod_{n>0} (1-q^n))*(Sum_{n>=0} A035294(n)*q^n).
a(n) = n*(n + 1)/4 where n*(n + 1)/2 is even.
G.f.: x*(3 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)^2).
From Benoit Jubin, Feb 05 2009: (Start)
a(n) = (2*n + 1)*floor((n + 1)/2).
a(2*k) = k*(4*k+1); a(2*k+1) = (k+1)*(4*k+3). (End)
a(2*n) = A007742(n), a(2*n-1) = A033991(n). - Arkadiusz Wesolowski, Jul 20 2012
a(n) = (4*n + 1 - (-1)^n)*(4*n + 3 - (-1)^n)/4^2. - Peter Bala, Jan 21 2019
a(n) = (2*n+1)*(n+1)*(1+(-1)^(n+1))/4 + (2*n+1)*(n)*(1+(-1)^n)/4. - Eric Simon Jacob, Jan 16 2020
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = 4 - Pi (A153799).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*log(2) - 4 (See A016687). (End)
a(n) = A014494(n)/2 = A274757(n)/3 = A266883(n) - 1. - Hugo Pfoertner, Dec 31 2024

A281026 a(n) = floor(3*n*(n+1)/4).

Original entry on oeis.org

0, 1, 4, 9, 15, 22, 31, 42, 54, 67, 82, 99, 117, 136, 157, 180, 204, 229, 256, 285, 315, 346, 379, 414, 450, 487, 526, 567, 609, 652, 697, 744, 792, 841, 892, 945, 999, 1054, 1111, 1170, 1230, 1291, 1354, 1419, 1485, 1552, 1621, 1692, 1764, 1837, 1912, 1989, 2067, 2146
Offset: 0

Author

Bruno Berselli, Jan 13 2017

Keywords

Crossrefs

Subsequence of A214068.
Partial sums of A047273.
Cf. A011865, A045943, A274757 (subsequence).
Cf. sequences with formula floor(k*n*(n+1)/4): A011848 (k=1), A000217 (k=2), this sequence (k=3), A002378 (k=4).
Cf. sequences with formula floor(k*n*(n+1)/(k+1)): A000217 (k=1), A143978 (k=2), this sequence (k=3), A281151 (k=4), A194275 (k=5).

Programs

  • Magma
    [3*n*(n+1) div 4: n in [0..60]];
  • Maple
    A281026:=n->floor(3*n*(n+1)/4): seq(A281026(n), n=0..100); # Wesley Ivan Hurt, Jan 13 2017
  • Mathematica
    Table[Floor[3 n (n + 1)/4], {n, 0, 60}]
    LinearRecurrence[{3,-4,4,-3,1},{0,1,4,9,15},60] (* Harvey P. Dale, Jun 04 2023 *)
  • Maxima
    makelist(floor(3*n*(n+1)/4), n, 0, 60);
    
  • PARI
    vector(60, n, n--; floor(3*n*(n+1)/4))
    
  • Python
    [int(3*n*(n+1)/4) for n in range(60)]
    
  • Sage
    [floor(3*n*(n+1)/4) for n in range(60)]
    

Formula

O.g.f.: x*(1 + x + x^2)/((1 + x^2)*(1 - x)^3).
E.g.f.: -(1 - 6*x - 3*x^2)*exp(x)/4 - (1 + i)*(i - exp(2*i*x))*exp(-i*x)/8, where i=sqrt(-1).
a(n) = a(-n-1) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) = a(n-4) + 6*n - 9.
a(n) = 3*n*(n+1)/4 + (i^(n*(n+1)) - 1)/4. Therefore:
a(4*k+r) = 12*k^2 + 3*(2*r+1)*k + r^2, where 0 <= r <= 3.
a(n) = n^2 - floor((n-1)*(n-2)/4).
a(n) = A011865(3*n+2).

A274830 Numbers k such that 7*k+1 is a triangular number (A000217).

Original entry on oeis.org

0, 2, 5, 11, 17, 27, 36, 50, 62, 80, 95, 117, 135, 161, 182, 212, 236, 270, 297, 335, 365, 407, 440, 486, 522, 572, 611, 665, 707, 765, 810, 872, 920, 986, 1037, 1107, 1161, 1235, 1292, 1370, 1430, 1512, 1575, 1661, 1727, 1817, 1886, 1980, 2052, 2150, 2225
Offset: 1

Author

Colin Barker, Jul 08 2016

Keywords

Comments

From Peter Bala, Nov 21 2024: (Start)
Numbers of the form n*(7*n + 3)/2 for n in Z. Cf. A057570.
The sequence terms occur as the exponents in the expansion of Product_{n >= 1} (1 - x^(7*n)) * (1 + x^(7*n-2)) * (1 + x^(7*n-5)) = 1 + x^2 + x^5 + x^11 + x^17 + x^27 + x^36 + .... Cf. A363800. (End)

Crossrefs

Cf. similar sequences where k*n+1 is a triangular number: A000096 (k=1), A074377 (k=2), A045943 (k=3), A274681 (k=4), A085787 (k=5), A274757 (k=6).

Programs

  • Mathematica
    Table[(14 (n - 1) n + (2 n - 1) (-1)^n + 1)/16, {n, 1, 60}] (* Bruno Berselli, Jul 08 2016 *)
  • PARI
    select(n->ispolygonal(7*n+1, 3), vector(3000, n, n-1))
    
  • PARI
    concat(0, Vec(x^2*(2+3*x+2*x^2)/((1-x)^3*(1+x)^2) + O(x^100)))

Formula

G.f.: x^2*(2 + 3*x + 2*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = (14*(n - 1)*n + (2*n - 1)*(-1)^n + 1)/16. Therefore:
a(n) = n*(7*n - 6)/8 for n even,
a(n) = (n - 1)*(7*n - 1)/8 for n odd.
E.g.f.: (x*(7*x -1)*cosh(x) + (7*x^2 + x + 1)*sinh(x))/8. - Stefano Spezia, Nov 26 2024

Extensions

Edited by Bruno Berselli, Jul 08 2016

A274756 Values of n such that 2*n+1 and 6*n+1 are both triangular numbers.

Original entry on oeis.org

0, 945, 13167, 35578242, 495540990, 1338951572595, 18649189618605, 50390103447476100, 701843601611053692, 1896381151803363988917, 26413182084381205040235, 71368408216577696911440390, 994033693861758668873164410, 2685878672926303893761783662455
Offset: 1

Author

Colin Barker, Jul 04 2016

Keywords

Comments

Intersection of A074377 and A274757.

Examples

			945 is in the sequence because 2*945+1 = 1891, 6*945+1 = 5671, and 1891 and 5671 are both triangular numbers.
		

Crossrefs

Cf. A124174 (2*n+1 and 9*n+1), A274579 (2*n+1 and 5*n+1), A274603 (2*n+1 and 3*n+1), A274680 (2*n+1 and 4*n+1).

Programs

  • PARI
    isok(n) = ispolygonal(2*n+1, 3) && ispolygonal(6*n+1, 3)
    
  • PARI
    concat(0, Vec(63*x^2*(15+194*x+15*x^2)/((1-x)*(1-194*x+x^2)*(1+194*x+x^2)) + O(x^20)))

Formula

G.f.: 63*x^2*(15+194*x+15*x^2) / ((1-x)*(1-194*x+x^2)*(1+194*x+x^2)).
a(n) = a(n-1)+37634*a(n-2)-37634*a(n-3)-a(n-4)+a(n-5). - Wesley Ivan Hurt, Apr 24 2021
Showing 1-4 of 4 results.