cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274783 Diagonal of the rational function 1/(1 - (w*x*y*z + w*x*y + w*x*z + w*y*z + x*y*z)).

Original entry on oeis.org

1, 1, 1, 25, 121, 361, 3361, 24361, 116425, 790441, 6060121, 36888721, 238815721, 1760983225, 11968188961, 79763351305, 570661612585, 4040282139625, 27901708614985, 198090585115105, 1420583920034161, 10056659775872161, 71730482491962361, 517012699162717825, 3713833648541268121
Offset: 0

Views

Author

Gheorghe Coserea, Jul 13 2016

Keywords

Comments

Diagonal of the rational function 1/(1 - (x^3 + y^3 + z^3 + w^3 + x*y*z*w)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • Maple
    with(combinat):
    seq(add((n+k)!/(k!^4*(n-3*k)!), k = 0..floor(n/3)), n = 0..20); # Peter Bala, Jan 27 2018
  • PARI
    my(x='x, y='y, z='z, w='w);
    R = 1/(1-(w*x*y*z+w*x*y+w*x*z+w*y*z+x*y*z));
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(20, R, [x,y,z,w])

Formula

0 = x^2*(x+3)^2*(x^4 - 260*x^3 + 6*x^2 - 4*x + 1)*y''' + 3*x*(x+3)*(2*x^5 - 381*x^4 - 1944*x^3 + 34*x^2 - 18*x + 3)*y'' + (7*x^6 - 764*x^5 - 9101*x^4 - 27264*x^3 + 381*x^2 - 132*x + 9)*y' + (x^5 - 13*x^4 - 246*x^3 - 5946*x^2 + 69*x - 9)*y, where y is the g.f.
a(n) = Sum_{k = 0..floor(n/3)} (n+k)!/(k!^4*(n-3*k)!) = Sum_{k = 0..floor(n/3)} binomial(n,3*k)*binomial(n+k,k)*(3*k)!/k!^3 (apply Eger, Theorem 3 to the set of column vectors S = {[1,1,1,1], [1,1,0,1], [1,0,1,1], [0,1,1,1], [1,1,1,0]}). - Peter Bala, Jan 27 2018
G.f.: Sum_{k>=0} (4*k)!/k!^4 * x^(3*k)/(1-x)^(4*k+1). - Seiichi Manyama, Mar 19 2023
From Vaclav Kotesovec, Mar 19 2023: (Start)
Recurrence: n^3*(2*n - 5)*(4*n - 11)*(4*n - 7)*a(n) = (4*n - 11)*(32*n^5 - 184*n^4 + 368*n^3 - 327*n^2 + 147*n - 27)*a(n-1) - (192*n^6 - 1920*n^5 + 7628*n^4 - 15366*n^3 + 16567*n^2 - 9117*n + 2025)*a(n-2) + (4*n - 9)*(4*n - 3)*(520*n^4 - 4420*n^3 + 13809*n^2 - 18769*n + 9367)*a(n-3) - (n-3)^3*(2*n - 3)*(4*n - 7)*(4*n - 3)*a(n-4).
a(n) ~ sqrt(9/8 + 3/(32*sqrt(2)) + sqrt(1085/32 + 161/(2*sqrt(2)))/8) * (1 + 2*sqrt(2) + 2*sqrt(2*(2*sqrt(2) - 1)))^n / (Pi^(3/2) * n^(3/2)). (End)