cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274796 Numbers n such that s2/s1 is an integer, where s1 is the sum of the odd numbers and s2 is the sum of the even numbers in the Collatz (3x+1) iteration of n.

Original entry on oeis.org

1, 2, 4, 5, 8, 16, 20, 32, 64, 80, 128, 186, 256, 320, 512, 704, 1024, 1280, 1344, 2048, 3808, 4096, 5090, 5120, 6464, 8192, 10152, 15904, 16384, 20480, 21760, 28672, 32768, 34640, 59392, 62132, 65536, 81920, 106496, 131072, 138880, 217824, 262144, 327680
Offset: 1

Views

Author

Michel Lagneau, Jul 07 2016

Keywords

Comments

Or numbers n such that A213909(n)/A213916(n) is an integer.
The powers of 2 are in the sequence because s1 = 1.
The corresponding integers s2/s1 are 0, 2, 6, 5, 14, 30, 10, 62, 126, 30, 254, 6, 510, 110, 1022, 34, 2046, 430, 126, 4094, 14, 8190, 6, 1710, 70, 16382, 14, 37, 32766, 6830, 510, 1066, 65534, 26, 1567,... The odd numbers are very rare: 5, 37, 1567,...
The numbers of the form 5*2^2m for m = 0,1,.. are in the sequence because s1 = 6, s2 = (5*(2^(2m+1)-2)+ 30) ==0 (mod 6) => s2/s1 is an integer.

Examples

			5 is in the sequence because the Collatz trajectory of 5 is 5 -> 16 -> 8 -> 4 -> 2 -> 1 with s1 = 5+1 = 6 and s2 = 16 + 8 + 4 + 2 = 30 => 30/6 = 5 is an integer.
		

Crossrefs

Programs

  • Maple
    T:=array(1..2000):U:=array(1..2000):nn:=350000:
    for n from 1 to nn do:
      kk:=1:m:=n:T[kk]:=n:it:=0:
        for i from 1 to nn while(m<>1) do:
         if irem(m,2)=0
          then
           m:=m/2:kk:=kk+1:T[kk]:=m:
          else
          m:=3*m+1:kk:=kk+1:T[kk]:=m:
         fi:
        od:
        s1:=0:s2:=0:
        for j from 1 to kk do:
        if irem(T[j],2)=1
        then
        s1:=s1+T[j]:
        else s2:=s2+T[j]:
        fi:
        od:
        if s1<>0 and floor(s2/s1)=s2/s1
        then
        printf(`%d, `,n):else fi:
      od:
  • Mathematica
    coll[n_]:=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&];a:=Select[coll[n],OddQ[#]&];b:=Select[coll[n],EvenQ[#]&];Do[s1=Sum[a[[i]],{i,1,Length[a]}];s2=Sum[b[[j]],{j,1,Length[b]}];If[IntegerQ[s2/s1],Print[n]],{n,1,350000}]
    s2s1Q[n_]:=Module[{coll=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&],s1,s2},s1=Total[ Select[ coll,OddQ]];s2=Total[Select[coll,EvenQ]];IntegerQ[s2/s1]]; Select[Range[330000],s2s1Q] (* Harvey P. Dale, Feb 26 2024 *)
  • PARI
    isok(n) = {if (n % 2, s1 = n; s2 = 0, s2 = n; s1 = 0); while (n != 1, if (n % 2, n = 3*n+1, n /= 2); if (n % 2, s1 += n, s2 +=n);); s2 % s1 == 0;} \\ Michel Marcus, Jul 09 2016