A274796 Numbers n such that s2/s1 is an integer, where s1 is the sum of the odd numbers and s2 is the sum of the even numbers in the Collatz (3x+1) iteration of n.
1, 2, 4, 5, 8, 16, 20, 32, 64, 80, 128, 186, 256, 320, 512, 704, 1024, 1280, 1344, 2048, 3808, 4096, 5090, 5120, 6464, 8192, 10152, 15904, 16384, 20480, 21760, 28672, 32768, 34640, 59392, 62132, 65536, 81920, 106496, 131072, 138880, 217824, 262144, 327680
Offset: 1
Keywords
Examples
5 is in the sequence because the Collatz trajectory of 5 is 5 -> 16 -> 8 -> 4 -> 2 -> 1 with s1 = 5+1 = 6 and s2 = 16 + 8 + 4 + 2 = 30 => 30/6 = 5 is an integer.
Programs
-
Maple
T:=array(1..2000):U:=array(1..2000):nn:=350000: for n from 1 to nn do: kk:=1:m:=n:T[kk]:=n:it:=0: for i from 1 to nn while(m<>1) do: if irem(m,2)=0 then m:=m/2:kk:=kk+1:T[kk]:=m: else m:=3*m+1:kk:=kk+1:T[kk]:=m: fi: od: s1:=0:s2:=0: for j from 1 to kk do: if irem(T[j],2)=1 then s1:=s1+T[j]: else s2:=s2+T[j]: fi: od: if s1<>0 and floor(s2/s1)=s2/s1 then printf(`%d, `,n):else fi: od:
-
Mathematica
coll[n_]:=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&];a:=Select[coll[n],OddQ[#]&];b:=Select[coll[n],EvenQ[#]&];Do[s1=Sum[a[[i]],{i,1,Length[a]}];s2=Sum[b[[j]],{j,1,Length[b]}];If[IntegerQ[s2/s1],Print[n]],{n,1,350000}] s2s1Q[n_]:=Module[{coll=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&],s1,s2},s1=Total[ Select[ coll,OddQ]];s2=Total[Select[coll,EvenQ]];IntegerQ[s2/s1]]; Select[Range[330000],s2s1Q] (* Harvey P. Dale, Feb 26 2024 *)
-
PARI
isok(n) = {if (n % 2, s1 = n; s2 = 0, s2 = n; s1 = 0); while (n != 1, if (n % 2, n = 3*n+1, n /= 2); if (n % 2, s1 += n, s2 +=n);); s2 % s1 == 0;} \\ Michel Marcus, Jul 09 2016
Comments