A275379 Number of prime factors (with multiplicity) of generalized Fermat number 6^(2^n) + 1.
1, 1, 1, 2, 3, 3, 3, 7, 3, 5
Offset: 0
Examples
b(n) = 6^(2^n) + 1. Complete Factorizations b(0) = 7 b(1) = 37 b(2) = 1297 b(3) = 17*98801 b(4) = 353*1697*4709377 b(5) = 2753*145601*19854979505843329 b(6) = 4926056449*447183309836853377*28753787197056661026689 b(7) = 257*763649*50307329*3191106049*2339340566463317436161* 2983028405608735541756929*18247770097021321924017185281 b(8) = 18433* 69615986569139423375849495295909549956813828853888948633601*P137 b(9) = 80897*3360769*12581314681802812884728041373153281* 3513902440204553274892072241244613302018049*P311
Programs
-
Mathematica
Table[PrimeOmega[6^(2^n) + 1], {n, 0, 6}] (* Michael De Vlieger, Jul 26 2016 *)
-
PARI
a(n) = bigomega(factor(6^(2^n)+1))
Formula
Extensions
a(8) was found in 2001 by Robert Silverman
a(9) was found in 2007 by Nestor de Araújo Melo