A275381 Number of prime factors (with multiplicity) of generalized Fermat number 10^(2^n) + 1.
1, 1, 2, 2, 5, 4, 3, 4, 5
Offset: 0
Examples
b(n) = 10^(2^n) + 1. Complete Factorizations b(0) = 11 b(1) = 101 b(2) = 73*137 b(3) = 17*5882353 b(4) = 353*449*641*1409*69857 b(5) = 19841*976193*6187457*834427406578561 b(6) = 1265011073* 15343168188889137818369*515217525265213267447869906815873 b(7) = 257*15361*453377*P116 b(8) = 10753*8253953*9524994049*73171503617*P225
Programs
-
Mathematica
Table[PrimeOmega[10^(2^n) + 1], {n, 0, 6}] (* Michael De Vlieger, Jul 26 2016 *)
-
PARI
a(n) = bigomega(factor(10^(2^n)+1))