A275465 a(n) = f^(n/f), where f is the smallest prime factor of n.
2, 3, 4, 5, 8, 7, 16, 27, 32, 11, 64, 13, 128, 243, 256, 17, 512, 19, 1024, 2187, 2048, 23, 4096, 3125, 8192, 19683, 16384, 29, 32768, 31, 65536, 177147, 131072, 78125, 262144, 37, 524288, 1594323, 1048576, 41, 2097152, 43, 4194304, 14348907, 8388608, 47, 16777216
Offset: 2
Examples
For n = 12 = 2^2*3, the smallest prime factor of n is f = 2, so a(12) = f^(n/f) = 2^(12/2) = 2^6 = 64. - _Michael B. Porter_, Jul 31 2016
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..1000
Programs
-
Maple
a:= n-> (f-> f^(n/f))(min(numtheory[factorset](n))): seq(a(n), n=2..50); # Alois P. Heinz, Dec 11 2017
-
Mathematica
a[n_] := With[{f = FactorInteger[n][[1, 1]]}, f^(n/f)]; ; Array[a,50,2] (* JungHwan Min, Jul 29 2016 *)(* amended by Harvey P. Dale, Aug 12 2021 *)
-
PARI
a(n) = my(f=factor(n)[1, 1]); f^(n/f) \\ Felix Fröhlich, Jul 30 2016
-
Python
from _future_ import division from sympy import primefactors def A275465(n): p = min(primefactors(n)) return p**(n//p) # Chai Wah Wu, Jul 29 2016
Formula
a(p) = p, a(p^2) = p^p and a(p^m) = p^(p^(m-1)) for prime p. - Chai Wah Wu, Jul 29 2016
Extensions
More terms from Chai Wah Wu, Jul 30 2016