cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275465 a(n) = f^(n/f), where f is the smallest prime factor of n.

Original entry on oeis.org

2, 3, 4, 5, 8, 7, 16, 27, 32, 11, 64, 13, 128, 243, 256, 17, 512, 19, 1024, 2187, 2048, 23, 4096, 3125, 8192, 19683, 16384, 29, 32768, 31, 65536, 177147, 131072, 78125, 262144, 37, 524288, 1594323, 1048576, 41, 2097152, 43, 4194304, 14348907, 8388608, 47, 16777216
Offset: 2

Views

Author

Tyler Skywalker, Jul 28 2016

Keywords

Examples

			For n = 12 = 2^2*3, the smallest prime factor of n is f = 2, so a(12) = f^(n/f) = 2^(12/2) = 2^6 = 64. - _Michael B. Porter_, Jul 31 2016
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f^(n/f))(min(numtheory[factorset](n))):
    seq(a(n), n=2..50);  # Alois P. Heinz, Dec 11 2017
  • Mathematica
    a[n_] := With[{f = FactorInteger[n][[1, 1]]}, f^(n/f)]; ; Array[a,50,2] (* JungHwan Min, Jul 29 2016 *)(* amended by Harvey P. Dale, Aug 12 2021 *)
  • PARI
    a(n) = my(f=factor(n)[1, 1]); f^(n/f) \\ Felix Fröhlich, Jul 30 2016
  • Python
    from _future_ import division
    from sympy import primefactors
    def A275465(n):
        p = min(primefactors(n))
        return p**(n//p) # Chai Wah Wu, Jul 29 2016
    

Formula

a(p) = p, a(p^2) = p^p and a(p^m) = p^(p^(m-1)) for prime p. - Chai Wah Wu, Jul 29 2016
a(n) = A020639(n)^(n/A020639(n)). - Felix Fröhlich, Jul 30 2016
a(n) = A020639(n)^A032742(n). - Chai Wah Wu, Jul 30 2016

Extensions

More terms from Chai Wah Wu, Jul 30 2016