A275710 Decimal expansion of the Dirichlet eta function at 7.
9, 9, 2, 5, 9, 3, 8, 1, 9, 9, 2, 2, 8, 3, 0, 2, 8, 2, 6, 7, 0, 4, 2, 5, 7, 1, 3, 1, 3, 3, 3, 9, 3, 6, 8, 5, 2, 3, 1, 1, 1, 5, 6, 9, 2, 4, 3, 1, 4, 0, 6, 8, 5, 1, 6, 2, 9, 5, 1, 3, 0, 8, 7, 5, 6, 2, 6, 7, 0, 2, 0, 5, 2, 1, 8, 6, 4, 7, 0, 5, 1, 9, 8, 1, 3, 1, 4, 2, 0, 3, 7, 7, 4, 5, 7, 2, 3, 9, 7, 0
Offset: 0
Examples
0.99259381992283028267...
Crossrefs
Programs
-
Mathematica
RealDigits[63 Zeta[7]/64, 10, 100] [[1]]
-
PARI
-polylog(7, -1) \\ Michel Marcus, Aug 20 2021
-
Sage
s = RLF(0); s RealField(110)(s) for i in range(1, 10000): s -= (-1)^i / i^7 print(s) # Terry D. Grant, Aug 06 2016
Formula
eta(7) = 63*zeta(7)/64 = (63*A013665)/64.
Equals Sum_{k>=1} (-1)^(k+1) / k^7. - Sean A. Irvine, Aug 19 2021