cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001015 Seventh powers: a(n) = n^7.

Original entry on oeis.org

0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 4782969, 10000000, 19487171, 35831808, 62748517, 105413504, 170859375, 268435456, 410338673, 612220032, 893871739, 1280000000, 1801088541, 2494357888, 3404825447, 4586471424, 6103515625, 8031810176
Offset: 0

Views

Author

Keywords

Comments

For n>0, (a(3*n-1)^7-a(2*n-1)^7-a(n)^7)/(7*(3*n-1)*(2*n-1)*n) = (2*A001106(n)+1)^2 (see Barisien reference, problem 173). - Bruno Berselli, Feb 01 2011
Number of the form a(n) + a(n+1) + ... + a(n+k) is never prime for all n, k>=0. This could be proved by the method indicated in the comment in A256581. - Vladimir Shevelev and Peter J. C. Moses, Apr 04 2015

References

  • E.-N. Barisien, Supplemento al Periodico di Matematica, Raffaello Giusti Editore (Livorno), July 1913, p. 135 (Problem 173).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000584 (5th powers), A013665 (zeta(7)), A275710 (eta(7)), A300785.
Cf. A003369 - A003379 (sums of 2, ..., 12 positive seventh powers).

Programs

Formula

Multiplicative with a(p^e) = p^(7e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^7 for primes p. - Jaroslav Krizek, Nov 01 2009
a(n) = 7*a(n-1) - 21* a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + 5040. - Ant King, Sep 24 2013
a(n) = n + Sum_{j=0..n-1}{k=1..6}binomial(7,k)*j^(7-k). - Patrick J. McNab, Mar 28 2016
G.f.: x*(1+120*x+1191*x^2+2416*x^3+1191*x^4+120*x^5+x^6)/(1-x)^8. See the Maple program. - Wolfdieter Lang, Oct 14 2016
From Kolosov Petro, Oct 22 2018: (Start)
a(n) = Sum_{k=1..n} A300785(n,k).
a(n) = Sum_{k=0..n-1} A300785(n,k). (End)
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(7) (A013665).
Sum_{n>=1} (-1)^(n+1)/a(n) = 63*zeta(7)/64 (A275710). (End)

Extensions

More terms from James Sellers, Sep 19 2000

A275703 Decimal expansion of the Dirichlet eta function at 6.

Original entry on oeis.org

9, 8, 5, 5, 5, 1, 0, 9, 1, 2, 9, 7, 4, 3, 5, 1, 0, 4, 0, 9, 8, 4, 3, 9, 2, 4, 4, 4, 8, 4, 9, 5, 4, 2, 6, 1, 4, 0, 4, 8, 8, 5, 6, 9, 3, 4, 6, 9, 3, 2, 6, 8, 8, 8, 0, 3, 4, 8, 3, 3, 3, 9, 3, 2, 5, 4, 1, 9, 6, 8, 0, 2, 1, 8, 6, 2, 7, 1, 7, 1, 3, 5, 7, 3, 9, 3, 7, 2, 9, 1, 1, 2, 7, 9, 5, 5, 9, 4, 6, 4
Offset: 0

Views

Author

Terry D. Grant, Aug 05 2016

Keywords

Comments

It appears that each sum of a Dirichlet eta function is 1/2^(x-1) less than the zeta(x), where x is a positive integer > 1. In this case, eta(x) = eta(6) = (31/32)*zeta(6) = 31*(Pi^6)/30240. Therefore eta(6) = 1/2^(6-1) or 1/32nd less than zeta(6) (see A013664). [Edited by Petros Hadjicostas, May 07 2020]

Examples

			31*(Pi^6)/30240 = 0.9855510912974...
		

Crossrefs

Cf. A002162 (decimal expansion of value at 1), A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A267316 (value at 5), A275710 (value at 7).

Programs

  • Mathematica
    RealDigits[31*(Pi^6)/30240,10,100]
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s -= (-1)^i / i^6
    print(s) # Terry D. Grant, Aug 05 2016

Formula

eta(6) = 31*(Pi^6)/30240 = 31*A092732/30240 = Sum_{n>=1} (-1)^(n+1)/n^6.
eta(6) = lim_{n -> infinity} A136677(n)/A334605(n). - Petros Hadjicostas, May 07 2020

A334668 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^7.

Original entry on oeis.org

1, 127, 277877, 35566069, 2778634972433, 2778624972433, 2288319945032390119, 292904812254103669607, 640582959329009845430509, 640582894792751053318381, 12483149055863937257566687990151, 12483148704882733411491577990151, 783299081298153288298872171970695856067
Offset: 1

Views

Author

Petros Hadjicostas, May 07 2020

Keywords

Comments

Lim_{n -> infinity} a(n)/A334669(n) = A275710 = (63/64)*A013665.

Examples

			The first few fractions are 1, 127/128, 277877/279936, 35566069/35831808, 2778634972433/2799360000000, 2778624972433/2799360000000, ... = A334668/A334669.
		

Crossrefs

Cf. A013665, A275710, A334669 (denominators).

Programs

  • Mathematica
    Numerator @ Accumulate[Table[(-1)^(k + 1)/k^7, {k, 1, 13}]] (* Amiram Eldar, May 08 2020 *)
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^7)); \\ Michel Marcus, May 08 2020

A334669 Denominator of Sum_{k=1..n} (-1)^(k+1)/k^7.

Original entry on oeis.org

1, 128, 279936, 35831808, 2799360000000, 2799360000000, 2305393332480000000, 295090346557440000000, 645362587921121280000000, 645362587921121280000000, 12576291107821424895098880000000, 12576291107821424895098880000000, 789143616376081512994335288360960000000
Offset: 1

Views

Author

Petros Hadjicostas, May 07 2020

Keywords

Comments

Lim_{n -> infinity} A334668(n)/a(n) = A275710 = (63/64)*A013665.

Examples

			The first few fractions are 1, 127/128, 277877/279936, 35566069/35831808, 2778634972433/2799360000000, 2778624972433/2799360000000, ... = A334668/A334669.
		

Crossrefs

Cf. A013665, A275710, A334668 (numerators).

Programs

  • Mathematica
    Denominator @ Accumulate[Table[(-1)^(k + 1)/k^7, {k, 1, 13}]] (* Amiram Eldar, May 08 2020 *)
  • PARI
    a(n) = denominator(sum(k=1, n, (-1)^(k+1)/k^7)); \\ Michel Marcus, May 08 2020

A347059 Decimal expansion of the Dirichlet eta function at 9.

Original entry on oeis.org

9, 9, 8, 0, 9, 4, 2, 9, 7, 5, 4, 1, 6, 0, 5, 3, 3, 0, 7, 6, 7, 7, 8, 3, 0, 3, 1, 8, 5, 2, 5, 9, 7, 9, 5, 0, 8, 7, 4, 3, 3, 3, 9, 5, 3, 5, 3, 7, 8, 7, 7, 4, 7, 2, 3, 4, 3, 3, 2, 8, 6, 6, 0, 3, 7, 8, 8, 8, 7, 4, 5, 5, 5, 2, 5, 4, 5, 2, 7, 0, 2, 0, 7, 9, 4, 9, 3
Offset: 0

Views

Author

Sean A. Irvine, Aug 14 2021

Keywords

Examples

			0.998094297541605330767783031852597950...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[DirichletEta[9],87]]] (* Stefano Spezia, Aug 15 2021 *)
  • PARI
    -polylog(9, -1) \\ Michel Marcus, Aug 15 2021

Formula

Equals (255/256) * zeta(9).
Equals Sum_{k>=1} (-1)^(k+1) / k^9.
Equals eta(9).

A347150 Decimal expansion of the Dirichlet eta function at 8.

Original entry on oeis.org

9, 9, 6, 2, 3, 3, 0, 0, 1, 8, 5, 2, 6, 4, 7, 8, 9, 9, 2, 2, 7, 2, 8, 9, 2, 6, 0, 0, 8, 2, 8, 0, 3, 6, 1, 7, 8, 7, 4, 1, 2, 5, 1, 5, 9, 4, 7, 2, 8, 9, 8, 0, 6, 7, 0, 4, 5, 2, 8, 9, 0, 2, 9, 1, 9, 4, 3, 5, 9, 6, 4, 8, 2, 5, 7, 7, 5, 8, 5, 8, 9, 2, 8, 2, 8, 2, 4
Offset: 0

Views

Author

Sean A. Irvine, Aug 19 2021

Keywords

Examples

			0.9962330018526478992272892600828036178741251594728980...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).

Crossrefs

Programs

  • Mathematica
    RealDigits[DirichletEta[8], 10, 100][[1]] (* Amiram Eldar, Aug 20 2021 *)
  • PARI
    -polylog(8, -1) \\ Michel Marcus, Aug 20 2021

Formula

Equals (127/128) * zeta(8).
Equals 127 * Pi^8 / 1209600.
Equals Sum_{k>=1} (-1)^(k+1) / k^8.
Equals eta(8).

A346927 Decimal expansion of the Dirichlet eta function at 10.

Original entry on oeis.org

9, 9, 9, 0, 3, 9, 5, 0, 7, 5, 9, 8, 2, 7, 1, 5, 6, 5, 6, 3, 9, 2, 2, 1, 8, 4, 5, 6, 9, 9, 3, 4, 1, 8, 3, 1, 4, 2, 5, 9, 2, 9, 6, 4, 9, 6, 6, 6, 8, 9, 0, 6, 4, 7, 1, 0, 6, 8, 9, 4, 8, 7, 5, 5, 0, 6, 1, 4, 2, 4, 5, 8, 3, 8, 4, 0, 3, 8, 1, 2, 4, 4, 0, 7, 9, 8, 5
Offset: 0

Views

Author

Sean A. Irvine, Aug 07 2021

Keywords

Examples

			0.999039507598271565639221845699341831425929649666890...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).

Crossrefs

Programs

  • Mathematica
    RealDigits[DirichletEta[10], 10, 100][[1]] (* Amiram Eldar, Aug 08 2021 *)
  • PARI
    -polylog(10, -1) \\ Michel Marcus, Aug 08 2021

Formula

Equals 73 * Pi^10 / (2^9 * 3^5 * 5 * 11).
Equals (511/512) * zeta(10).
Equals Sum_{k>=1} (-1)^(k+1) / k^10.
Equals eta(10).
Showing 1-7 of 7 results.