cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A275710 Decimal expansion of the Dirichlet eta function at 7.

Original entry on oeis.org

9, 9, 2, 5, 9, 3, 8, 1, 9, 9, 2, 2, 8, 3, 0, 2, 8, 2, 6, 7, 0, 4, 2, 5, 7, 1, 3, 1, 3, 3, 3, 9, 3, 6, 8, 5, 2, 3, 1, 1, 1, 5, 6, 9, 2, 4, 3, 1, 4, 0, 6, 8, 5, 1, 6, 2, 9, 5, 1, 3, 0, 8, 7, 5, 6, 2, 6, 7, 0, 2, 0, 5, 2, 1, 8, 6, 4, 7, 0, 5, 1, 9, 8, 1, 3, 1, 4, 2, 0, 3, 7, 7, 4, 5, 7, 2, 3, 9, 7, 0
Offset: 0

Views

Author

Terry D. Grant, Aug 06 2016

Keywords

Examples

			0.99259381992283028267...
		

Crossrefs

Cf. A002162 (value at 1), A013665, A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A267316 (value at 5), A275703 (value at 6), A334668, A334669, A347150, A347059.

Programs

  • Mathematica
    RealDigits[63 Zeta[7]/64, 10, 100] [[1]]
  • PARI
    -polylog(7, -1) \\ Michel Marcus, Aug 20 2021
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s -= (-1)^i / i^7
    print(s) # Terry D. Grant, Aug 06 2016
    

Formula

eta(7) = 63*zeta(7)/64 = (63*A013665)/64.
eta(7) = Lim_{n -> infinity} A334668(n)/A334669(n). - Petros Hadjicostas, May 07 2020
Equals Sum_{k>=1} (-1)^(k+1) / k^7. - Sean A. Irvine, Aug 19 2021

A334669 Denominator of Sum_{k=1..n} (-1)^(k+1)/k^7.

Original entry on oeis.org

1, 128, 279936, 35831808, 2799360000000, 2799360000000, 2305393332480000000, 295090346557440000000, 645362587921121280000000, 645362587921121280000000, 12576291107821424895098880000000, 12576291107821424895098880000000, 789143616376081512994335288360960000000
Offset: 1

Views

Author

Petros Hadjicostas, May 07 2020

Keywords

Comments

Lim_{n -> infinity} A334668(n)/a(n) = A275710 = (63/64)*A013665.

Examples

			The first few fractions are 1, 127/128, 277877/279936, 35566069/35831808, 2778634972433/2799360000000, 2778624972433/2799360000000, ... = A334668/A334669.
		

Crossrefs

Cf. A013665, A275710, A334668 (numerators).

Programs

  • Mathematica
    Denominator @ Accumulate[Table[(-1)^(k + 1)/k^7, {k, 1, 13}]] (* Amiram Eldar, May 08 2020 *)
  • PARI
    a(n) = denominator(sum(k=1, n, (-1)^(k+1)/k^7)); \\ Michel Marcus, May 08 2020
Showing 1-2 of 2 results.