cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275822 Alternating sums of the cubes of the central binomial coefficients.

Original entry on oeis.org

1, 7, 209, 7791, 335209, 15667799, 773221225, 39651016343, 2092095886657, 112840936041343, 6193764391911873, 344853399798469695, 19429178297906958721, 1105629520934309041279, 63455683531507986958721, 3668895994183490904049279
Offset: 0

Views

Author

Emanuele Munarini, Nov 15 2016

Keywords

Crossrefs

Cf. A079727.

Programs

  • Maple
    L:= [seq((-1)^k*binomial(2*k,k)^3,k=0..20)]:
    B:= ListTools:-PartialSums(L):
    seq((-1)^(k+1)*B[k],k=1..nops(B)); # Robert Israel, Nov 21 2016
  • Mathematica
    Table[Sum[Binomial[2 k, k]^3 (-1)^(n - k), {k, 0, n}], {n, 0, 20}]
    Table[Sum[(-1)^(n - k) (k + 1)^3 CatalanNumber[k]^3, {k, 0, n}], {n, 0, 20}] (* Jan Mangaldan, Jul 07 2020 *)
  • Maxima
    makelist(sum(binomial(2*k,k)^3*(-1)^(n-k),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k,k)^3); \\ Michel Marcus, Jul 07 2020

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2*k,k)^3.
Recurrence: (n+2)^3*a(n+2)-(3*n+4)*(21*n^2+66*n+52)*a(n+1)-8*(2n+3)^3*a(n)=0.
G.f.: (4/Pi^2)*K((1-sqrt(1-64*t))/2)^2/(1+t), where K(x) is complete elliptic integral of the first kind (defined as in The Wolfram Functions Site).
a(n) ~ 2^(6*n+6) / (65*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 16 2016