A275982 Decimal expansion of 2^21701 - 1, the 25th Mersenne prime A000668(25).
4, 4, 8, 6, 7, 9, 1, 6, 6, 1, 1, 9, 0, 4, 3, 3, 3, 4, 7, 9, 4, 9, 5, 1, 4, 1, 0, 3, 6, 1, 5, 9, 1, 7, 7, 8, 7, 2, 7, 2, 0, 9, 0, 2, 3, 7, 2, 9, 3, 8, 8, 6, 1, 3, 0, 1, 0, 3, 6, 4, 8, 0, 4, 4, 7, 5, 1, 2, 7, 8, 5, 6, 0, 9, 1, 5, 8, 0, 5, 3, 6, 3, 7, 1, 6, 2, 0, 1, 8, 3, 9, 5, 9, 2, 0, 1, 8, 3, 1, 0, 8, 6, 8, 9, 1
Offset: 6533
Examples
44867916611904333479495141036159177872720902372938861301036480447512785...
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 6533..13065
- Wikipedia, Mersenne prime
Crossrefs
Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000688(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20), A275977 = A000668(21), A275979 = A000668(22), A275980 = A000668(23), A275981 = A000668(24), A275983 = A000668(26), A275984 = A000668(27).
Programs
-
Magma
Reverse(Intseq(2^21701-1))[1..105];
-
Mathematica
First@RealDigits@N[2^21701 - 1, 100] (* G. C. Greubel, Aug 15 2016 *)
-
PARI
eval(Vec(Str(2^21701-1)))[1..105]
Formula
2^A000043(25) - 1.