A275977 Decimal expansion of 2^9689 - 1, the 21st Mersenne prime A000668(21).
4, 7, 8, 2, 2, 0, 2, 7, 8, 8, 0, 5, 4, 6, 1, 2, 0, 2, 9, 5, 2, 8, 3, 9, 2, 9, 8, 6, 6, 0, 0, 0, 5, 9, 0, 9, 7, 4, 1, 4, 9, 7, 1, 7, 2, 4, 0, 2, 2, 3, 6, 5, 0, 0, 8, 5, 1, 3, 3, 4, 5, 1, 0, 9, 9, 1, 8, 3, 7, 8, 9, 5, 0, 9, 4, 2, 6, 6, 2, 9, 7, 0, 2, 7, 8, 9, 2, 7, 6, 8, 6, 1, 1, 2, 7, 0, 7, 8, 9, 4, 5, 8, 6, 8, 2
Offset: 2917
Examples
47822027880546120295283929866000590974149717240223650085133451099183789...
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 2917..5833
- Wikipedia, Mersenne prime
Crossrefs
Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000688(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20), A275979 = A000668(22), A275980 = A000668(23), A275981 = A000668(24), A275982 = A000668(25), A275983 = A000668(26), A275984 = A000668(27).
Programs
-
Magma
Reverse(Intseq(2^9689-1))[1..105];
-
Mathematica
First@RealDigits@N[2^9689 - 1, 100] (* G. C. Greubel, Aug 15 2016 *) RealDigits[2^MersennePrimeExponent[21]-1,10,120][[1]] (* Harvey P. Dale, Aug 14 2025 *)
-
PARI
eval(Vec(Str(2^9689-1)))[1..105]
Formula
2^A000043(21) - 1.
Comments