cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276039 Numbers using only digits 1 and 7.

Original entry on oeis.org

1, 7, 11, 17, 71, 77, 111, 117, 171, 177, 711, 717, 771, 777, 1111, 1117, 1171, 1177, 1711, 1717, 1771, 1777, 7111, 7117, 7171, 7177, 7711, 7717, 7771, 7777, 11111, 11117, 11171, 11177, 11711, 11717, 11771, 11777, 17111, 17117, 17171, 17177, 17711, 17717, 17771, 17777
Offset: 1

Views

Author

Vincenzo Librandi, Aug 19 2016

Keywords

Comments

Numbers k such that the product of digits of k is a power of 7.
There are no prime terms whose number of digits is divisible by 3: for every d that is a multiple of 3, every d-digit number j consisting of no digits other than 1's and 7's will have a digit sum divisible by 3, so j will also be divisible by 3. - Mikk Heidemaa, Mar 27 2021

Examples

			7717 is in the sequence because 7*7*1*7 = 343 = 7^3.
		

Crossrefs

Cf. similar sequences listed in A276037.

Programs

  • Magma
    [n: n in [1..24000] | Set(Intseq(n)) subset {1,7}];
    
  • Mathematica
    Select[Range[20000], IntegerQ[Log[7, Times@@(IntegerDigits[#])]] &] (* or *) Flatten[Table[FromDigits/@Tuples[{1, 7}, n], {n, 6}]]
  • PARI
    is(n) = my(d=digits(n), e=[0, 2, 3, 4, 5, 6, 8, 9]); if(#setintersect(Set(d), Set(e))==0, return(1), return(0)) \\ Felix Fröhlich, Aug 19 2016
    
  • PARI
    a(n) = { my(b = binary(n + 1)); b = b[^1]; b = apply(x -> 6*x + 1, b); fromdigits(b) } \\ David A. Corneth, Mar 27 2021
    
  • Python
    def a(n):
      b = bin(n+1)[3:]
      return int("".join(b.replace("1", "7").replace("0", "1")))
    print([a(n) for n in range(1, 47)]) # Michael S. Branicky, Mar 27 2021
    
  • Python
    def A276039(n): return 6*int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025