A276039 Numbers using only digits 1 and 7.
1, 7, 11, 17, 71, 77, 111, 117, 171, 177, 711, 717, 771, 777, 1111, 1117, 1171, 1177, 1711, 1717, 1771, 1777, 7111, 7117, 7171, 7177, 7711, 7717, 7771, 7777, 11111, 11117, 11171, 11177, 11711, 11717, 11771, 11777, 17111, 17117, 17171, 17177, 17711, 17717, 17771, 17777
Offset: 1
Examples
7717 is in the sequence because 7*7*1*7 = 343 = 7^3.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..24000] | Set(Intseq(n)) subset {1,7}];
-
Mathematica
Select[Range[20000], IntegerQ[Log[7, Times@@(IntegerDigits[#])]] &] (* or *) Flatten[Table[FromDigits/@Tuples[{1, 7}, n], {n, 6}]]
-
PARI
is(n) = my(d=digits(n), e=[0, 2, 3, 4, 5, 6, 8, 9]); if(#setintersect(Set(d), Set(e))==0, return(1), return(0)) \\ Felix Fröhlich, Aug 19 2016
-
PARI
a(n) = { my(b = binary(n + 1)); b = b[^1]; b = apply(x -> 6*x + 1, b); fromdigits(b) } \\ David A. Corneth, Mar 27 2021
-
Python
def a(n): b = bin(n+1)[3:] return int("".join(b.replace("1", "7").replace("0", "1"))) print([a(n) for n in range(1, 47)]) # Michael S. Branicky, Mar 27 2021
-
Python
def A276039(n): return 6*int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025
Comments