cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276135 Ben Ames Williams's Monkey and Coconuts Problem.

Original entry on oeis.org

0, 0, 1, 20, 51, 2604, 6665, 720600, 1864135, 348678440, 909090909, 261535698060, 685853880635, 281241170407092, 740800455037201, 410525522232055664, 1085102592571150095, 781282469559318055056, 2070863582910344082917, 1879498672877297909667780, 4993219047619047619047619, 5577014881186619679500164220
Offset: 1

Views

Author

Mark Richardson, Aug 21 2016

Keywords

Comments

In Ben Ames Williams's coconuts problem, a pile of coconuts remains the next day that is divisible by n sailors. Integers in the sequence multiplied by (n^2)-n determine the size of the divisible pile.

Crossrefs

Programs

  • Magma
    [((n-1)^(n-1 div 2 +(-1)^n div 2)-1) div n: n in [1..25]]; // Vincenzo Librandi, May 15 2019
  • Maple
    seq(((n-1)^(n-1/2+(-1)^n/2)-1)/n,n=1..30); # Robert Israel, Aug 26 2016
  • Mathematica
    Join[{0}, Table[((n - 1)^(n - 1/2 + (-1)^n/2) - 1)/n, {n, 2, 30}]] (* Bruno Berselli, Aug 26 2016 *)
  • PARI
    a(n) = ((n-1)^(n-1/2+(-1)^n/2)-1)/n \\ Felix Fröhlich, Aug 26 2016
    

Formula

a(n) = ((n-1)^(n-1) - 1)/n, if n is odd.
a(n) = ((n-1)^n - 1)/n, if n is even.
a(n) = ((n-1)^(n - 1/2 + (-1)^n/2) - 1)/n = (n^A052928(n) - 1)/n. - Omar E. Pol, Aug 24 2016