A276135 Ben Ames Williams's Monkey and Coconuts Problem.
0, 0, 1, 20, 51, 2604, 6665, 720600, 1864135, 348678440, 909090909, 261535698060, 685853880635, 281241170407092, 740800455037201, 410525522232055664, 1085102592571150095, 781282469559318055056, 2070863582910344082917, 1879498672877297909667780, 4993219047619047619047619, 5577014881186619679500164220
Offset: 1
Links
- Mark Richardson, Table of n, a(n) for n = 1..101
- M. B. Richardson, A Needlessly Complicated and Unhelpful Solution to Ben Ames Williams' Coconuts Problem, The Winnower, 3 (2016), e147175.52128. doi: 10.15200/winn.147175.52128
Programs
-
Magma
[((n-1)^(n-1 div 2 +(-1)^n div 2)-1) div n: n in [1..25]]; // Vincenzo Librandi, May 15 2019
-
Maple
seq(((n-1)^(n-1/2+(-1)^n/2)-1)/n,n=1..30); # Robert Israel, Aug 26 2016
-
Mathematica
Join[{0}, Table[((n - 1)^(n - 1/2 + (-1)^n/2) - 1)/n, {n, 2, 30}]] (* Bruno Berselli, Aug 26 2016 *)
-
PARI
a(n) = ((n-1)^(n-1/2+(-1)^n/2)-1)/n \\ Felix Fröhlich, Aug 26 2016
Formula
a(n) = ((n-1)^(n-1) - 1)/n, if n is odd.
a(n) = ((n-1)^n - 1)/n, if n is even.
a(n) = ((n-1)^(n - 1/2 + (-1)^n/2) - 1)/n = (n^A052928(n) - 1)/n. - Omar E. Pol, Aug 24 2016
Comments