A276158 Triangle read by rows: T(n,k) = 6*k*(n + 1 - k) for 0 < k <= n; for k = 0, T(n,0) = n + 1.
1, 2, 6, 3, 12, 12, 4, 18, 24, 18, 5, 24, 36, 36, 24, 6, 30, 48, 54, 48, 30, 7, 36, 60, 72, 72, 60, 36, 8, 42, 72, 90, 96, 90, 72, 42, 9, 48, 84, 108, 120, 120, 108, 84, 48, 10, 54, 96, 126, 144, 150, 144, 126, 96, 54
Offset: 0
Examples
Triangle starts: ---------------------------------------------- n \ k | 0 1 2 3 4 5 6 7 ---------------------------------------------- 0 | 1; 1 | 2, 6; 2 | 3, 12, 12; 3 | 4, 18, 24, 18; 4 | 5, 24, 36, 36, 24; 5 | 6, 30, 48, 54, 48, 30; 6 | 7, 36, 60, 72, 72, 60, 36; 7 | 8, 42, 72, 90, 96, 90, 72, 42; ...
Links
- Norman Whitehead, Kaprekar Network Graph for 3 Digits
- Norman Whitehead, Kaprekar Network Graph Node Count Verification
Programs
-
Magma
[IsZero(k) select n+1 else 6*k*(n+1-k): k in [0..n], n in [0..10]]; // Bruno Berselli, Aug 31 2016
-
Magma
/* As triangle (see the second comment): */ m:=3; Q:=func; P:=func
; [[P(n, k, m): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Aug 31 2016 -
Maple
T:= (n, k) -> `if`(k=0, n+1, 6*k*(n+1-k)): seq(seq(T(n, k), k=0..n), n=0..30); # Robert Israel, Aug 31 2016
-
Mathematica
Table[If[k == 0, n + 1, 6 k (n + 1 - k)], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 25 2016 *)
-
PARI
T(n, k) = if (k==0, n+1, 6*k*(n+1-k)); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 25 2016
Formula
Sum_{k=0..n} T(n,k) = T(n,0)^3 = A000578(n+1).
G.f. as triangle: (1+4*x*y + x^2*y^2)/((1-x)^2*(1-x*y)^2). - Robert Israel, Aug 31 2016
T(n,n-h) = (h+1)*A008458(n-h) for 0 <= h <= n. Therefore, the main diagonal of the triangle is A008458. - Bruno Berselli, Aug 31 2016
Extensions
Corrected and rewritten by Bruno Berselli, Sep 01 2016
Comments