cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276194 Odd numbers whose binary representation contains an even number of 1's and at least one 0.

Original entry on oeis.org

5, 9, 17, 23, 27, 29, 33, 39, 43, 45, 51, 53, 57, 65, 71, 75, 77, 83, 85, 89, 95, 99, 101, 105, 111, 113, 119, 123, 125, 129, 135, 139, 141, 147, 149, 153, 159, 163, 165, 169, 175, 177, 183, 187, 189, 195, 197, 201, 207, 209, 215, 219, 221, 225, 231, 235, 237
Offset: 1

Views

Author

Lei Zhou, Oct 20 2016

Keywords

Examples

			Binary expansions of odd integers in decimal and binary forms are as follows:
   1 ->     1, no;
   3 ->    11, no;
   5 ->   101, yes, so a(1)=5;
   7 ->   111, no;
   9 ->  1001, yes so a(2)=9;
  11 ->  1011, no;
  13 ->  1101, no;
  15 ->  1111, no;
  17 -> 10001, yes so a(3)=17.
		

Crossrefs

Cf. A005408.
Intersection of A129771 and A062289.

Programs

  • Mathematica
    BNDigits[m_Integer] :=
      Module[{n = m, d, t = {}},
       While[n > 0, d = Mod[n, 2]; PrependTo[t, d]; n = (n - d)/2]; t];
    c = 1;
    Table[While[c = c + 2; d = BNDigits[c]; ld = Length[d];
      c1 = Total[d]; ! (EvenQ[c1] && (c1 < ld))]; c, {n, 1, 57}]
  • PARI
    isok(n) = my(b=binary(n)); (n % 2) && (vecmin(b)==0) && !(vecsum(b) % 2); \\ Michel Marcus, Oct 21 2016
    
  • PARI
    seq(N) = {
      my(bag = List(), cnt = 0, n = 1);
      while(cnt < N,
            if (hammingweight(n)%2 == 0 && hammingweight(n+1) > 1,
                listput(bag, n); cnt++);
            n += 2);
      return(Vec(bag));
    };
    seq(57)  \\ Gheorghe Coserea, Oct 25 2016

Formula

a(2^n - floor(n/2)) = 4*2^n + 1, for all n >= 0. - Gheorghe Coserea, Oct 24 2016