cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276225 a(n+3) = 2*a(n+2) + a(n+1) + a(n) with a(0)=3, a(1)=2, a(2)=6.

Original entry on oeis.org

3, 2, 6, 17, 42, 107, 273, 695, 1770, 4508, 11481, 29240, 74469, 189659, 483027, 1230182, 3133050, 7979309, 20321850, 51756059, 131813277, 335704463, 854978262, 2177474264, 5545631253, 14123715032, 35970535581, 91610417447, 233315085507, 594211124042, 1513347751038, 3854221711625, 9816002298330
Offset: 0

Views

Author

G. C. Greubel, Aug 24 2016

Keywords

Comments

Also the number of maximal independent vertex sets (and minimal vertex covers) on the 2n-crossed prism graph. - Eric W. Weisstein, Jun 15 2017
Also the number of irredundant sets in the n-sun graph. - Eric W. Weisstein, Aug 07 2017
Let {x,y,z} be the simple roots of P(x) = x^3 + u*x^2 + v*x + w. For n>=0, let p(n) = x^n/((x-y)(x-z)) + y^n/((y-x)(y-z)) + z^n/((z-x)(z-y)), q(n) = x^n + y^n + z^n. Then for n >= 0, q(n) = 3*p(n+2) + 2*u*p(n+1) + v*p(n). In this case, P(x) = x^3 - 2*x^2 - x - 1, q(n) = a(n), p(n) = A077939(n). - Kai Wang, Apr 15 2020
Also the number of tilings of a bracelet of length n with two colors of squares and one color of domino and tromino. - Greg Dresden and Arnim Kuchhal, Aug 05 2024

Crossrefs

Programs

  • Magma
    I:=[3,2,6]; [n le 3 select I[n] else 2*Self(n-1)+ Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 25 2016
    
  • Maple
    f:= gfun:-rectoproc({a(n+3) = 2*a(n+2) + a(n+1) + a(n), a(0)=3, a(1)=2, a(2)=6},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Aug 29 2016
  • Mathematica
    LinearRecurrence[{2, 1, 1}, {3, 2, 6}, 50]
    CoefficientList[Series[(3 - 4 x - x^2)/(1 - 2 x - x^2 - x^3), {x, 0, 32}], x] (* Michael De Vlieger, Aug 25 2016 *)
    Table[RootSum[-1 - #1 - 2 #1^2 + #1^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, Jun 15 2017 *)
  • PARI
    Vec((3-4*x-x^2)/(1-2*x-x^2-x^3) + O(x^99)) \\ Altug Alkan, Aug 25 2016

Formula

Let p = (4*(61 + 9*sqrt(29)))^(1/3), q = (4*(61 - 9*sqrt(29)))^(1/3), and x = (1/6)*(4 + p + q) then x^n = (1/6)*(2*a(n) + A276226(n)*(p + q) + A077939(n-1)*(p^2 + q^2)).
G.f.: (3 - 4*x - x^2)/(1 - 2*x - x^2 - x^3).
a(n) = b^n + c^n + d^n, where (b, c, d) are the three roots of the cubic equation x^3 = 2*x^2 + x + 1.
a(n) = 3*A077939(n+2) - 4*A077939(n+1) - A077939(n). - Kai Wang, Apr 15 2020