A276225 a(n+3) = 2*a(n+2) + a(n+1) + a(n) with a(0)=3, a(1)=2, a(2)=6.
3, 2, 6, 17, 42, 107, 273, 695, 1770, 4508, 11481, 29240, 74469, 189659, 483027, 1230182, 3133050, 7979309, 20321850, 51756059, 131813277, 335704463, 854978262, 2177474264, 5545631253, 14123715032, 35970535581, 91610417447, 233315085507, 594211124042, 1513347751038, 3854221711625, 9816002298330
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..2450
- Eric Weisstein's World of Mathematics, Crossed Prism Graph
- Eric Weisstein's World of Mathematics, Irredundant Set
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
- Eric Weisstein's World of Mathematics, Minimal Vertex Cover
- Eric Weisstein's World of Mathematics, Sun Graph
- Index entries for linear recurrences with constant coefficients, signature (2,1,1).
Programs
-
Magma
I:=[3,2,6]; [n le 3 select I[n] else 2*Self(n-1)+ Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 25 2016
-
Maple
f:= gfun:-rectoproc({a(n+3) = 2*a(n+2) + a(n+1) + a(n), a(0)=3, a(1)=2, a(2)=6},a(n),remember): map(f, [$0..40]); # Robert Israel, Aug 29 2016
-
Mathematica
LinearRecurrence[{2, 1, 1}, {3, 2, 6}, 50] CoefficientList[Series[(3 - 4 x - x^2)/(1 - 2 x - x^2 - x^3), {x, 0, 32}], x] (* Michael De Vlieger, Aug 25 2016 *) Table[RootSum[-1 - #1 - 2 #1^2 + #1^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, Jun 15 2017 *)
-
PARI
Vec((3-4*x-x^2)/(1-2*x-x^2-x^3) + O(x^99)) \\ Altug Alkan, Aug 25 2016
Formula
Let p = (4*(61 + 9*sqrt(29)))^(1/3), q = (4*(61 - 9*sqrt(29)))^(1/3), and x = (1/6)*(4 + p + q) then x^n = (1/6)*(2*a(n) + A276226(n)*(p + q) + A077939(n-1)*(p^2 + q^2)).
G.f.: (3 - 4*x - x^2)/(1 - 2*x - x^2 - x^3).
a(n) = b^n + c^n + d^n, where (b, c, d) are the three roots of the cubic equation x^3 = 2*x^2 + x + 1.
Comments