A276289 Expansion of x*(1 + x)/(1 - 2*x)^3.
0, 1, 7, 30, 104, 320, 912, 2464, 6400, 16128, 39680, 95744, 227328, 532480, 1232896, 2826240, 6422528, 14483456, 32440320, 72220672, 159907840, 352321536, 772800512, 1688207360, 3674210304, 7969177600, 17230200832, 37144756224, 79859548160, 171261820928, 366414397440
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Pentagonal Number
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Crossrefs
Programs
-
GAP
List([0..40], n-> 2^(n-3)*n*(3*n+1)); # G. C. Greubel, Jun 02 2019
-
Magma
[2^(n-3)*n*(3*n+1): n in [0..40]]; // G. C. Greubel, Jun 02 2019
-
Maple
a:=series(x*(1+x)/(1-2*x)^3,x=0,31): seq(coeff(a,x,n),n=0..40); # Paolo P. Lava, Mar 27 2019
-
Mathematica
LinearRecurrence[{6, -12, 8}, {0, 1, 7}, 40] Table[2^(n - 3) n (3 n + 1), {n, 0, 40}]
-
PARI
concat(0, Vec(x*(1+x)/(1-2*x)^3 + O(x^40))) \\ Altug Alkan, Aug 27 2016
-
Sage
[2^(n-3)*n*(3*n+1) for n in (0..40)] # G. C. Greubel, Jun 02 2019
Formula
O.g.f.: x*(1 + x)/(1 - 2*x)^3.
E.g.f.: x*(2 + 3*x)*exp(2*x)/2.
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).
a(n) = Sum_{k = 0..n} binomial(n,k)*k*(3*k - 1)/2.
a(n) = 2^(n-3)*n*(3*n + 1).
Sum_{n>=1} 1/a(n) = 8*(-3*2^(1/3)*Hypergeometric2F1(1/3,1/3;4/3;-1) + 3 + log(2)) = 1.1906948190529335181687...
Comments