cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276289 Expansion of x*(1 + x)/(1 - 2*x)^3.

Original entry on oeis.org

0, 1, 7, 30, 104, 320, 912, 2464, 6400, 16128, 39680, 95744, 227328, 532480, 1232896, 2826240, 6422528, 14483456, 32440320, 72220672, 159907840, 352321536, 772800512, 1688207360, 3674210304, 7969177600, 17230200832, 37144756224, 79859548160, 171261820928, 366414397440
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2016

Keywords

Comments

Binomial transform of pentagonal numbers (A000326).
More generally, the binomial transform of k-gonal numbers is n*Hypergeometric2F1(k/(k-2),1-n;2/(k-2);-1), where Hypergeometric2F1(a,b;c;x) is the hypergeometric function.
Coefficients in the hypergeometric series identity 1 - 7*x/(x + 6) + 30*x*(x - 1)/((x + 6)*(x + 8)) - 104*x*(x - 1)*(x - 2)/((x + 6)*(x + 8)*(x + 10)) + ... = 0, valid in the half-plane Re(x) > 0. Cf. A077616 and A084901. - Peter Bala, May 30 2019

Crossrefs

Cf. A001793 (binomial transform of triangular numbers), A001788 (binomial transform of squares), A084899 (binomial transform of heptagonal numbers).

Programs

  • GAP
    List([0..40], n-> 2^(n-3)*n*(3*n+1)); # G. C. Greubel, Jun 02 2019
  • Magma
    [2^(n-3)*n*(3*n+1): n in [0..40]]; // G. C. Greubel, Jun 02 2019
    
  • Maple
    a:=series(x*(1+x)/(1-2*x)^3,x=0,31): seq(coeff(a,x,n),n=0..40); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    LinearRecurrence[{6, -12, 8}, {0, 1, 7}, 40]
    Table[2^(n - 3) n (3 n + 1), {n, 0, 40}]
  • PARI
    concat(0, Vec(x*(1+x)/(1-2*x)^3 + O(x^40))) \\ Altug Alkan, Aug 27 2016
    
  • Sage
    [2^(n-3)*n*(3*n+1) for n in (0..40)] # G. C. Greubel, Jun 02 2019
    

Formula

O.g.f.: x*(1 + x)/(1 - 2*x)^3.
E.g.f.: x*(2 + 3*x)*exp(2*x)/2.
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).
a(n) = Sum_{k = 0..n} binomial(n,k)*k*(3*k - 1)/2.
a(n) = 2^(n-3)*n*(3*n + 1).
Sum_{n>=1} 1/a(n) = 8*(-3*2^(1/3)*Hypergeometric2F1(1/3,1/3;4/3;-1) + 3 + log(2)) = 1.1906948190529335181687...