cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A053220 a(n) = (3*n-1) * 2^(n-2).

Original entry on oeis.org

1, 5, 16, 44, 112, 272, 640, 1472, 3328, 7424, 16384, 35840, 77824, 167936, 360448, 770048, 1638400, 3473408, 7340032, 15466496, 32505856, 68157440, 142606336, 297795584, 620756992, 1291845632, 2684354560, 5570035712, 11542724608, 23890755584, 49392123904
Offset: 1

Views

Author

Asher Auel, Jan 01 2000

Keywords

Comments

Coefficients in the hypergeometric series identity 1 - 5*x/(x + 4) + 16*x*(x - 1)/((x + 4)*(x + 6)) - 44*x*(x - 1)*(x - 2)/((x + 4)*(x + 6)*(x + 8)) + ... = 0, valid in the half-plane Re(x) > 0. Cf. A276289. - Peter Bala, May 30 2019
For n>=2, a(n) is the total number of ones in runs of ones of length >=5 over all binary strings of length n+3. - Félix Balado, Aug 06 2025

Crossrefs

Center elements from triangle A053218. Also a diagonal of triangle A056242.

Programs

  • Haskell
    a053220 n = a056242 (n + 1) n  -- Reinhard Zumkeller, May 08 2014
  • Magma
    [(3*n-1)*2^(n-2): n in [1..50]]; // Vincenzo Librandi, May 09 2011
    
  • Mathematica
    ListCorrelate[{1, 1}, Table[n 2^(n - 1), {n, 0, 28}]] (* or *) ListConvolve[{1, 1}, Table[n 2^(n - 1), {n, 0, 28}]] (* Ross La Haye, Feb 24 2007 *)
    LinearRecurrence[{4, -4}, {1, 5}, 35] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
    Array[(3# - 1) 2^(# - 2) &, 35] (* Alonso del Arte, Sep 04 2018 *)
    CoefficientList[Series[(1 + x)/(1 - 2 * x)^2, {x, 0, 50}], x] (* Stefano Spezia, Sep 04 2018 *)
  • PARI
    a(n)=if(n<1,0,(3*n-1)*2^(n-2))
    
  • PARI
    a(n)=(3*n-1)<<(n-2) \\ Charles R Greathouse IV, Apr 17 2012
    

Formula

G.f.: x*(1+x)/(1-2*x)^2.
a(n) = (3*n-1) * 2^(n-2).
E.g.f.: exp(2*x)*(1+3*x). The sequence 0, 1, 5, 16, ... has a(n) = ((3n-1)*2^n + 0^n)/4 (offset 0). It is the binomial transform of A032766. The sequence 1, 5, 16, ... has a(n) = (2+3n)*2^(n-1) (offset 0). It is the binomial transform of A016777. - Paul Barry, Jul 23 2003
Row sums of A132776(n-1). - Gary W. Adamson, Aug 29 2007

A077616 Binomial transform of n^2*2^n/2.

Original entry on oeis.org

1, 10, 63, 324, 1485, 6318, 25515, 99144, 373977, 1377810, 4979799, 17714700, 62178597, 215765046, 741360195, 2525407632, 8537599665, 28669116186, 95692860783, 317684800980, 1049522104701, 3451916556990, 11307641812443
Offset: 1

Views

Author

Karol A. Penson, Nov 12 2002

Keywords

Comments

With a leading zero, this is second binomial transform of the hexagonal numbers A000384 (with leading zero). - Paul Barry, Jun 09 2003
Coefficients in the hypergeometric series identity 1 - 10*x/(x + 9) + 63*x*(x - 1)/((x + 9)*(x + 12)) - 324*x*(x - 1)*(x - 2)/((x + 9)*(x + 12)*(x + 15)) + ... = 0, valid in the half-plane Re(x) > 0. Cf. A276289 and A084901. - Peter Bala, May 30 2019

Crossrefs

Programs

Formula

E.g.f: x*(1+2*x)*exp(3*x).
O.g.f: ((1/3)*x^(3/4)*3^(3/4)/(-(3*x+1)/(3*x-1)+1)^(1/4))*(-(3*x+1)/(3*x-1)-1)^(1/4)*hypergeom([ -1, 2], [3/2], 3*x/(3*x-1))/(3*x-1)^2, which can also be represented as associated Legendre function: 1/6*x^(3/4)*Pi^(1/2)*3^(3/4)*LegendreP(1, -1/2, (3*x+1)/(1-3*x))/(3*x-1)^2.
G.f.: x*(1+x)/(1-3*x)^3. - Paul Barry, Jun 09 2003
a(n) = n*(2*n+1)*3^(n-2). - Paul Barry, Jul 24 2003

A084901 a(n) = 4^(n-2)*n*(5*n+3)/2.

Original entry on oeis.org

0, 1, 13, 108, 736, 4480, 25344, 136192, 704512, 3538944, 17367040, 83623936, 396361728, 1853882368, 8573157376, 39258685440, 178241142784, 803158884352, 3594887626752, 15994458210304, 70781061038080, 311711546474496
Offset: 0

Views

Author

Paul Barry, Jun 10 2003

Keywords

Comments

Binomial transform of A084900. Third binomial transform of heptagonal numbers A000566. Fourth binomial transform of (0,1,5,0,0,0,...).
Coefficients in the hypergeometric series identity 1 - 13*x/(x + 12) + 108*x*(x - 1)/((x + 12)*(x + 16)) - 736*x*(x - 1)*(x - 2)/((x + 12)*(x + 16)*(x + 20)) + ... = 0, valid in the half-plane Re(x) > 0. Cf. A276289 and A077616. - Peter Bala, May 30 2019

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(2*n-5)*n*(5*n+3)); # G. C. Greubel, Jun 06 2019
  • Magma
    [2^(2*n-5)*n*(5*n+3): n in [0..30]]; // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    Table[2^(2*n-5)*n*(5*n+3), {n,0,30}] (* G. C. Greubel, Jun 06 2019 *)
    LinearRecurrence[{12,-48,64},{0,1,13},30] (* or *) CoefficientList[ Series[-((x (1+x))/(-1+4 x)^3),{x,0,30}],x] (* Harvey P. Dale, Jul 14 2021 *)
  • PARI
    vector(30, n, n--; 2^(2*n-5)*n*(5*n+3)) \\ G. C. Greubel, Jun 06 2019
    
  • Sage
    [2^(2*n-5)*n*(5*n+3) for n in (0..30)] # G. C. Greubel, Jun 06 2019
    

Formula

G.f.: x*(1+x)/(1-4*x)^3.
E.g.f.: x*(2 + 5*x)*exp(4*x)/2. - G. C. Greubel, Jun 06 2019
a(n) = 12*a(n-1)-48*a(n-2)+64*a(n-3). - Wesley Ivan Hurt, May 28 2021

A091320 Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges and k leaves.

Original entry on oeis.org

1, 2, 1, 4, 7, 1, 8, 30, 16, 1, 16, 104, 122, 30, 1, 32, 320, 660, 365, 50, 1, 64, 912, 2920, 2875, 903, 77, 1, 128, 2464, 11312, 17430, 9856, 1960, 112, 1, 256, 6400, 39872, 88592, 78974, 28560, 3864, 156, 1, 512, 16128, 130944, 396480, 512316, 294042, 73008, 7074, 210, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 24 2004

Keywords

Comments

T(n,k) is the number of even trees with 2n edges and k-1 jumps. An even tree is an ordered tree in which each vertex has an even outdegree. In the preorder traversal of an ordered tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 19 2007
T(n,k) is the number of non-crossing set partitions of {1..3n} into n sets of 3 with k of the sets being a contiguous set of elements; also the number of non-crossing configurations with exactly k polyomino matchings in a generalized game of memory played on the path of length 3n, see [Young]. - Donovan Young, May 29 2020

Examples

			Triangle starts:
   1;
   2,   1;
   4,   7,   1;
   8,  30,  16,   1;
  16, 104, 122,  30,  1;
  32, 320, 660, 365, 50, 1;
  ...
		

Crossrefs

Row sums give A001764.
Column 2 is A276289.
Cf. A072247.

Programs

  • Maple
    T := proc(n,k) if k=n then 1 else (1/n)*binomial(n,k)*sum(2^(n+1-2*k+j)*binomial(n,j)*binomial(n-k,k-1-j),j=0..n) fi end: seq(seq(T(n,k),k=1..n),n=1..12);
  • Mathematica
    T[n_, k_] := 1/n Binomial[n, k] Sum[2^(n+1-2k+j) Binomial[n, j] Binomial[n-k, k-1-j], {j, 0, n}];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
  • PARI
    T(n,k) = binomial(n, k)*sum(j=0, n, 2^(n+1-2*k+j)*binomial(n, j)*binomial(n-k, k-1-j))/n; \\ Andrew Howroyd, Nov 06 2017

Formula

T(n, k) = (1/n)*binomial(n, k)*Sum_{j=0..n} 2^(n+1-2*k+j)*binomial(n, j)*binomial(n-k, k-1-j).
G.f.: G(t, z) satisfies z*G^3 - (1 + z - t*z)*G + 1 = 0.
Showing 1-4 of 4 results.