cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077616 Binomial transform of n^2*2^n/2.

Original entry on oeis.org

1, 10, 63, 324, 1485, 6318, 25515, 99144, 373977, 1377810, 4979799, 17714700, 62178597, 215765046, 741360195, 2525407632, 8537599665, 28669116186, 95692860783, 317684800980, 1049522104701, 3451916556990, 11307641812443
Offset: 1

Views

Author

Karol A. Penson, Nov 12 2002

Keywords

Comments

With a leading zero, this is second binomial transform of the hexagonal numbers A000384 (with leading zero). - Paul Barry, Jun 09 2003
Coefficients in the hypergeometric series identity 1 - 10*x/(x + 9) + 63*x*(x - 1)/((x + 9)*(x + 12)) - 324*x*(x - 1)*(x - 2)/((x + 9)*(x + 12)*(x + 15)) + ... = 0, valid in the half-plane Re(x) > 0. Cf. A276289 and A084901. - Peter Bala, May 30 2019

Crossrefs

Programs

Formula

E.g.f: x*(1+2*x)*exp(3*x).
O.g.f: ((1/3)*x^(3/4)*3^(3/4)/(-(3*x+1)/(3*x-1)+1)^(1/4))*(-(3*x+1)/(3*x-1)-1)^(1/4)*hypergeom([ -1, 2], [3/2], 3*x/(3*x-1))/(3*x-1)^2, which can also be represented as associated Legendre function: 1/6*x^(3/4)*Pi^(1/2)*3^(3/4)*LegendreP(1, -1/2, (3*x+1)/(1-3*x))/(3*x-1)^2.
G.f.: x*(1+x)/(1-3*x)^3. - Paul Barry, Jun 09 2003
a(n) = n*(2*n+1)*3^(n-2). - Paul Barry, Jul 24 2003

A084902 a(n) = 5^(n-1)*n*(n+1)/2.

Original entry on oeis.org

0, 1, 15, 150, 1250, 9375, 65625, 437500, 2812500, 17578125, 107421875, 644531250, 3808593750, 22216796875, 128173828125, 732421875000, 4150390625000, 23345947265625, 130462646484375, 724792480468750, 4005432128906250
Offset: 0

Views

Author

Paul Barry, Jun 10 2003

Keywords

Comments

Binomial transform of A084901. Fourth binomial transform of heptagonal numbers A000566. Fifth binomial transform of (0,1,5,0,0,0,...).
Number of n-permutations of 6 objects u, v, w, z, x, y with repetition allowed, containing exactly two u's. Example: a(2)=15 because we have uuw, uuv, uuz, uux, uuy, uwu, uvu, uzu, uxu, uyu, wuu, vuu, zuu, xuu, yuu. - Zerinvary Lajos, Dec 30 2007
A shifted version of A081135. - R. J. Mathar, Sep 17 2008

Crossrefs

Programs

  • Magma
    [5^(n-1)*Binomial(n+1,2): n in [0..30]]; // G. C. Greubel, May 17 2021
    
  • Mathematica
    Table[5^(n-1)n(n+1)/2,{n,0,30}] (* or *) LinearRecurrence[{15,-75,125},{0,1,15},30] (* Harvey P. Dale, Sep 18 2018 *)
  • PARI
    a(n)=5^(n-1)*n*(n+1)/2 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [5^(n-1)*binomial(n+1,2) for n in (0..30)] # G. C. Greubel, May 17 2021

Formula

G.f.: x/(1 - 5*x)^3.
E.g.f.: (x/2)*(2 + 5*x)*exp(5*x). - G. C. Greubel, May 17 2021
a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3). - Wesley Ivan Hurt, May 17 2021

A276289 Expansion of x*(1 + x)/(1 - 2*x)^3.

Original entry on oeis.org

0, 1, 7, 30, 104, 320, 912, 2464, 6400, 16128, 39680, 95744, 227328, 532480, 1232896, 2826240, 6422528, 14483456, 32440320, 72220672, 159907840, 352321536, 772800512, 1688207360, 3674210304, 7969177600, 17230200832, 37144756224, 79859548160, 171261820928, 366414397440
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2016

Keywords

Comments

Binomial transform of pentagonal numbers (A000326).
More generally, the binomial transform of k-gonal numbers is n*Hypergeometric2F1(k/(k-2),1-n;2/(k-2);-1), where Hypergeometric2F1(a,b;c;x) is the hypergeometric function.
Coefficients in the hypergeometric series identity 1 - 7*x/(x + 6) + 30*x*(x - 1)/((x + 6)*(x + 8)) - 104*x*(x - 1)*(x - 2)/((x + 6)*(x + 8)*(x + 10)) + ... = 0, valid in the half-plane Re(x) > 0. Cf. A077616 and A084901. - Peter Bala, May 30 2019

Crossrefs

Cf. A001793 (binomial transform of triangular numbers), A001788 (binomial transform of squares), A084899 (binomial transform of heptagonal numbers).

Programs

  • GAP
    List([0..40], n-> 2^(n-3)*n*(3*n+1)); # G. C. Greubel, Jun 02 2019
  • Magma
    [2^(n-3)*n*(3*n+1): n in [0..40]]; // G. C. Greubel, Jun 02 2019
    
  • Maple
    a:=series(x*(1+x)/(1-2*x)^3,x=0,31): seq(coeff(a,x,n),n=0..40); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    LinearRecurrence[{6, -12, 8}, {0, 1, 7}, 40]
    Table[2^(n - 3) n (3 n + 1), {n, 0, 40}]
  • PARI
    concat(0, Vec(x*(1+x)/(1-2*x)^3 + O(x^40))) \\ Altug Alkan, Aug 27 2016
    
  • Sage
    [2^(n-3)*n*(3*n+1) for n in (0..40)] # G. C. Greubel, Jun 02 2019
    

Formula

O.g.f.: x*(1 + x)/(1 - 2*x)^3.
E.g.f.: x*(2 + 3*x)*exp(2*x)/2.
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).
a(n) = Sum_{k = 0..n} binomial(n,k)*k*(3*k - 1)/2.
a(n) = 2^(n-3)*n*(3*n + 1).
Sum_{n>=1} 1/a(n) = 8*(-3*2^(1/3)*Hypergeometric2F1(1/3,1/3;4/3;-1) + 3 + log(2)) = 1.1906948190529335181687...

A084900 a(n) = 3^(n-2)*n*(5*n+1)/2.

Original entry on oeis.org

0, 1, 11, 72, 378, 1755, 7533, 30618, 119556, 452709, 1673055, 6062364, 21611934, 75996063, 264126177, 908764110, 3099363912, 10489051017, 35255264499, 117775828656, 391294693890, 1293597012771, 4257363753621, 13954111172802
Offset: 0

Views

Author

Paul Barry, Jun 10 2003

Keywords

Comments

Binomial transform of A084899. Second binomial transform of heptagonal numbers A000566. Third binomial transform of (0,1,5,0,0,0,...).

Crossrefs

Programs

  • Mathematica
    Table[(3^(n-2) n(5n+1))/2,{n,0,30}] (* or *) LinearRecurrence[{9,-27,27},{0,1,11},30] (* Harvey P. Dale, Jul 21 2016 *)

Formula

G.f.: x*(1 + 2*x)/(1 - 3*x)^3.
E.g.f.: exp(3*x)*x*(2 + 5*x)/2. - Stefano Spezia, Oct 28 2023
Showing 1-4 of 4 results.