A084901
a(n) = 4^(n-2)*n*(5*n+3)/2.
Original entry on oeis.org
0, 1, 13, 108, 736, 4480, 25344, 136192, 704512, 3538944, 17367040, 83623936, 396361728, 1853882368, 8573157376, 39258685440, 178241142784, 803158884352, 3594887626752, 15994458210304, 70781061038080, 311711546474496
Offset: 0
-
List([0..30], n-> 2^(2*n-5)*n*(5*n+3)); # G. C. Greubel, Jun 06 2019
-
[2^(2*n-5)*n*(5*n+3): n in [0..30]]; // G. C. Greubel, Jun 06 2019
-
Table[2^(2*n-5)*n*(5*n+3), {n,0,30}] (* G. C. Greubel, Jun 06 2019 *)
LinearRecurrence[{12,-48,64},{0,1,13},30] (* or *) CoefficientList[ Series[-((x (1+x))/(-1+4 x)^3),{x,0,30}],x] (* Harvey P. Dale, Jul 14 2021 *)
-
vector(30, n, n--; 2^(2*n-5)*n*(5*n+3)) \\ G. C. Greubel, Jun 06 2019
-
[2^(2*n-5)*n*(5*n+3) for n in (0..30)] # G. C. Greubel, Jun 06 2019
A218016
Triangle, read by rows, where T(n,k) = k!*C(n, k)*5^(n-k) for n>=0, k=0..n.
Original entry on oeis.org
1, 5, 1, 25, 10, 2, 125, 75, 30, 6, 625, 500, 300, 120, 24, 3125, 3125, 2500, 1500, 600, 120, 15625, 18750, 18750, 15000, 9000, 3600, 720, 78125, 109375, 131250, 131250, 105000, 63000, 25200, 5040, 390625, 625000, 875000, 1050000, 1050000, 840000, 504000, 201600, 40320
Offset: 0
Triangle begins:
1;
5, 1;
25, 10, 2;
125, 75, 30, 6;
625, 500, 300, 120, 24;
3125, 3125, 2500, 1500, 600, 120;
15625, 18750, 18750, 15000, 9000, 3600, 720;
78125, 109375, 131250, 131250, 105000, 63000, 25200, 5040;
390625, 625000, 875000, 1050000, 1050000, 840000, 504000, 201600, 40320; etc.
-
[Factorial(n)/Factorial(n-k)*5^(n-k): k in [0..n], n in [0..10]];
-
Flatten[Table[n!/(n-k)!*5^(n-k), {n, 0, 10}, {k, 0, n}]]
A116156
a(n) = 5^n * n*(n + 1).
Original entry on oeis.org
0, 10, 150, 1500, 12500, 93750, 656250, 4375000, 28125000, 175781250, 1074218750, 6445312500, 38085937500, 222167968750, 1281738281250, 7324218750000, 41503906250000, 233459472656250, 1304626464843750, 7247924804687500
Offset: 0
-
List([0..30], n-> 5^n*n*(n+1)); # G. C. Greubel, May 10 2019
-
[(n^2+n)*5^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,10,150]; [n le 3 select I[n] else 15*Self(n-1)-75*Self(n-2)+125*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n) 5^n, {n, 0, 30}] (* or *) CoefficientList[Series[10 x/(1 - 5 x)^3, {x, 0, 30}], x](* Vincenzo Librandi, Feb 28 2013 *)
-
a(n)=(n^2+n)*5^n \\ Charles R Greathouse IV, Feb 28 2013
-
[5^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 10 2019
A173113
a(n) = binomial(n + 10, 10) * 5^n.
Original entry on oeis.org
1, 55, 1650, 35750, 625625, 9384375, 125125000, 1519375000, 17092968750, 180425781250, 1804257812500, 17222460937500, 157872558593750, 1396564941406250, 11970556640625000, 99754638671875000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (55,-1375,20625,-206250,1443750,-7218750,25781250,-64453125,107421875,-107421875,48828125).
-
[5^n*Binomial(n+10, 10): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
Table[Binomial[n + 10, 10]*5^n, {n, 0, 20}]
Showing 1-4 of 4 results.
Comments