A276391 G.f. satisfies A(x) - 4*A(x^2) = x/(1+x).
1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 171, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 683, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 171, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 2731, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 171, 1, 3, 1, 11, 1, 3, 1, 43, 1, 3, 1, 11, 1, 3, 1, 683, 1, 3, 1, 11, 1, 3
Offset: 1
Examples
A(4) = 11. Thus Table[unbert[1/2 + (2*4+1) I/2^n] - unbert[1/2 + (2*4-1) I/2^n], {n, 5, 9}] {{11/256, 11/256, -11/256, -11/256}, {11/1024, 11/1024, -11/1024, -11/1024}, {11/4096, 11/4096, -11/4096, -11/4096}, {11/16384, 11/16384, -11/16384, -11/16384}, {11/65536, 11/65536, -11/65536, -11/65536}} where unbert(H(t)) = {t}, the multivalued inverse Hilbert function (with I = sqrt(-1). See the definition of unbert[] in the MATHEMATICA section. Note that this table must have n > 4, lest (2*4+1)/2^n > 1/2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..16383
- Bill Gosper, Connect-the-dots exact samplings of Hilbert's spacefiller
- Nicholas J. Rose, Hilbert-Type Space-Filling Curves. [Wayback Machine link]
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, `if`(n::odd, 1, 4*a(n/2)-1)) end: seq(a(n), n=1..100); # Alois P. Heinz, Sep 07 2016
-
Mathematica
(* Cf. the numerators of Out[339], below*) hilbert[t_] := piecewiserecursivefractal[t, Identity, {Min[4, 1 + Floor[4*#]]} &, {1 - 4*# &, 4*# - 1 &, 4*# - 2 &, 4 - 4*# &}, {I*(1 - #)/2 &, (I + #)/2 &, (I + 1 + #)/2 &, 1 + #*I/2 &}] (* E.g., hilbert[1/2] {1/2 + I/2} *) unbert[z_] := piecewiserecursivefractal[z, Identity, If[0 <= Re[#] <= 1 && 0 <= Im[#] <= 1, Range[4], {}] &, {1 - 2*#/I &, 2*# - I &, 2*# - I - 1 &, (# - 1)*2/I &}, {(1 - #)/4 &, (# + 1)/4 &, (# + 2)/4 &, 1 - #/4 &}] (* unbert[1/2 + I/2] {1/6, 1/2, 5/6} a triple point: hilbert/@% {{1/2 + I/2}, {1/2 + I/2}, {1/2 + I/2}} *) ClearAll[piecewiserecursivefractal]; piecewiserecursivefractal[x_, f_, which_, iters_, fns_] := CheckAbort[ Check[piecewiserecursivefractal[x, g_, which, iters, fns] = ((piecewiserecursivefractal[x, h_, which, iters, fns] := Block[{y}, y /. Solve[f[y] == h[y], y]]); Union @@ ((fns[[#]] /@ piecewiserecursivefractal[iters[[#]][x], Composition[f, fns[[#]]], which, iters, fns]) & /@ which[x])), Abort[], {$RecursionLimit::reclim, $RecursionLimit::reclim2}], piecewiserecursivefractal[x, g_, which, iters, fns] =.; Abort[]] (* For a simpler but less bulletproof version, see the MATHEMATICA section of A260482 *) In[338]:= unbert /@ (1/2 + I Range[1/32, 15/32, 1/16]) Out[338]= {{257/3072, 259/3072, 2813/3072, 2815/3072}, {269/3072, 271/3072, 2801/3072, 2803/3072}, {305/3072, 307/3072, 2765/3072, 2767/3072}, {317/3072, 319/3072, 2753/3072, 2755/3072}, {449/3072, 451/3072, 2621/3072, 2623/3072}, {461/3072, 463/3072, 2609/3072, 2611/3072}, {497/3072, 499/3072, 2573/3072, 2575/3072}, {509/3072, 511/3072, 2561/3072, 2563/3072}} In[339]:= Differences@% Out[339]= {{1/256, 1/256, -1/256, -1/256}, {3/256, 3/256, -3/256, -3/256}, {1/256, 1/256, -1/256, -1/256}, {11/256, 11/256, -11/256, -11/256}, {1/256, 1/256, -1/256, -1/256}, {3/256, 3/256, -3/256, -3/256}, {1/256, 1/256, -1/256, -1/256}} (* Check that %338[[1]] is a quadruple point *) In[340]:= hilbert /@ %%[[1]] Out[340]= {{1/2 + I/32}, {1/2 + I/32}, {1/2 + I/32}, {1/2 + I/32}} In[341]:= Select[Range[0, 1, 1/512], Length[unbert[# + I/2] > 3] &] Out[341]= {} (* I.e., there aren't any quadruple points on the horizontal bisector of the unit square! Other such horizontal and vertical lines of dyadic rationals intersect a dense set of quadruple points. *) a[n_] := (2^(2*IntegerExponent[n, 2]+1) + 1)/3; Array[a, 100] (* Amiram Eldar, Dec 18 2023 *)
-
PARI
a(n)= fromdigits(binary(n), 4)-fromdigits(binary(n-1), 4) \\ Bill McEachen, Dec 20 2024
Formula
a(n) = (2 + 4^A001511(n))/6.
G.f.: A(x) - 4*A(x^2) = x/(1+x).
From Alois P. Heinz, Sep 07 2016: (Start)
a(2^n) = A007583(n).
a(2^n+n) = a(n) + A000007(n).
(a(2*n)+1)/4 = a(n) for n>0. (End)
G.f.: Sum_{k>=0} 4^k * x^(2^k) / (1 + x^(2^k)). - Ilya Gutkovskiy, Dec 14 2020
Extensions
Keyword:mult added by Andrew Howroyd, Aug 06 2018
Comments