A276509 Numbers k in base 10 such that the digits of 2 + k are the digits of 2k written in reverse order.
2, 47, 497, 4997, 49997, 499997, 4999997, 49999997, 499999997, 4999999997, 49999999997, 499999999997, 4999999999997, 49999999999997, 499999999999997, 4999999999999997, 49999999999999997, 499999999999999997, 4999999999999999997, 49999999999999999997, 499999999999999999997
Offset: 1
Examples
47 is in the sequence because 47 + 2 = 49 and 47*2 = 94. 497 is in the sequence because 497 + 2 = 499 and 497*2 = 994.
Links
- Xander Faber and Jon Grantham, On Integers Whose Sum is the Reverse of their Product, arXiv:2108.13441 [math.NT], 2021.
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Programs
-
Magma
[5*10^(n-1)-3: n in [1..25]]; // Vincenzo Librandi, Sep 09 2016
-
Mathematica
Select[Range[10^6], IntegerDigits[# + 2] == Reverse@ IntegerDigits[2 #] &] (* or *) Table[5 (10^(n - 1)) - 3, {n, 22}] (* or *) CoefficientList[Series[x(2 + 25 x)/(1 - 11 x + 10 x^2), {x, 0, 21}], x] (* or *) {2}~Join~Table[FromDigits@ Join[{4}, ConstantArray[9, {n - 2}], {7}], {n, 2, 22}] (* Michael De Vlieger, Sep 06 2016 *)
-
PARI
isok(n) = digits(n+2) == Vecrev(digits(2*n)); \\ Michel Marcus, Sep 07 2016
Formula
a(n) = 5 * 10^(n - 1) - 3. - Peter Bala, Sep 06 2016
G.f.: x*(2 + 25*x)/(1 - 11*x + 10*x^2). - Michael De Vlieger, Sep 06 2016
E.g.f.: (exp(10*x) - 6*exp(x) + 5)/2. - Stefano Spezia, Mar 04 2023