cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276529 a(n) = (a(n-1) * a(n-5) + 1) / a(n-6), a(0) = a(1) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 20, 27, 34, 41, 89, 137, 185, 233, 281, 610, 939, 1268, 1597, 1926, 4181, 6436, 8691, 10946, 13201, 28657, 44113, 59569, 75025, 90481, 196418, 302355, 408292, 514229, 620166, 1346269, 2072372, 2798475, 3524578, 4250681, 9227465
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2016

Keywords

Comments

Thanks to the linear recurrence signature, we see that this is actually five separate linear recurrence sequences, each with signature (7,-1), interwoven together. - Greg Dresden, Oct 16 2021

Crossrefs

5th-sections: A049685, A033891, A033889.

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,7,0,0,0,0,-1}, {1,1,1,1,1,1,2,3,4,5}, 50] (* G. C. Greubel, Nov 18 2016 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==1,a[n]==(a[n-1]a[n-5]+ 1)/a[n-6]},a,{n,50}] (* Harvey P. Dale, Oct 08 2020 *)
    Flatten[Table[{LucasL[4 n - 2]/3, Fibonacci[4 n - 1], LucasL[4 n + 2]/3 - Fibonacci[4 n], LucasL[4 n - 2]/3 + Fibonacci[4 n], Fibonacci[4 n + 1]}, {n, 0, 10}]] (* Greg Dresden, Oct 16 2021 *)
  • PARI
    Vec((1 +x +x^2 +x^3 +x^4 -6*x^5 -5*x^6 -4*x^7 -3*x^8 -2*x^9)/(1 -7*x^5 +x^10) + O(x^50)) \\ Colin Barker, Nov 16 2016
  • Ruby
    def A(k, m, n)
      a = Array.new(2 * k, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[-1] * a[1] + a[k] ** m
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276529(n)
      A(3, 0, n)
    end
    

Formula

a(n) + a(n+10) = 7*a(n+5).
a(5-n) = a(n).
G.f.: (1 +x +x^2 +x^3 +x^4 -6*x^5 -5*x^6 -4*x^7 -3*x^8 -2*x^9) / (1 -7*x^5 +x^10). - Colin Barker, Nov 16 2016
From Greg Dresden, Oct 16 2021: (Start)
a(5*n) = L(4*n-2)/3 = A049685(n-1),
a(5*n+1) = F(4*n-1) = A033891(n-1),
a(5*n+2) = L(4*n+2)/3 - F(4*n),
a(5*n+3) = L(4*n-2)/3 + F(4*n),
a(5*n+4) = F(4*n+1) = A033889(n). (End)