A276659 Accumulation of the upper left triangle used in binomial transform of nonnegative integers.
0, 2, 11, 39, 114, 300, 741, 1757, 4052, 9162, 20415, 44979, 98214, 212888, 458633, 982905, 2097000, 4456278, 9436995, 19922735, 41942810, 88080132, 184549101, 385875669, 805306044, 1677721250, 3489660551, 7247756907, 15032385102, 31138512432, 64424508945
Offset: 0
Examples
Starting from the triangle: 0, 1, 2, 3, 4, 5, ... 1, 3, 5, 7, 9, ... 4, 8, 12, 16, ... 12, 20, 28, ... 32, 48, ... 80, ... ... the first terms are: a(0) = 0; a(1) = a(0) + 1 + 1 = 2; a(2) = a(1) + 4 + 3 + 2 = 11; a(3) = a(2) + 12 + 8 + 5 + 3 = 39, etc. First column is A001787: n*2^(n-1).
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-19,25,-16,4).
Programs
-
Magma
[(2^(n+2)-n-3)*n/2: n in [0..40]]; // Vincenzo Librandi, Sep 13 2016
-
Maple
A276659:=n->n*(2^(n+2) - n - 3)/2: seq(A276659(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
-
Mathematica
t[0, k_] := k; t[n_, k_] := t[n, k] = t[n - 1, k] + t[n - 1, k + 1]; a[n_] := Sum[t[m, k], {m, 0, n}, {k, 0, n - m}]; Table[a[n], {n, 0, 30}] Table[(2^(n + 2) - n - 3) n / 2, {n, 0, 30}] (* Vincenzo Librandi, Sep 13 2016 *)
-
PARI
x='x+O('x^99); concat(0, Vec(x*(2-3*x)/((1-x)^3*(1-2*x)^2))) \\ Altug Alkan, Sep 14 2017
Formula
O.g.f.: x*(2 - 3*x)/((1 - x)^3*(1 - 2*x)^2).
E.g.f.: x*exp(x)*(8*exp(x) - x - 4)/2.
a(n) = n*(2^(n+2) - n - 3)/2.
a(n) = 7*a(n-1) - 19*a(n-2) + 25*a(n-3) - 16*a(n-4) + 4*a(n-5) for n > 4.
a(n) = a(n-1) + A058877(n+1). - R. J. Mathar, Sep 14 2016
a(n) = Sum_{k=2..n+3} Sum_{i=2..n+3} k * C(n-i+3,k). - Wesley Ivan Hurt, Sep 20 2017
Extensions
Edited and extended by Bruno Berselli, Sep 13 2016
Comments