A276740 Numbers n such that 3^n == 5 (mod n).
1, 2, 4, 76, 418, 1102, 4687, 7637, 139183, 2543923, 1614895738, 9083990938, 23149317409, 497240757797, 4447730232523, 16000967516764, 65262766108619, 141644055557882
Offset: 1
Examples
3 == 5 (mod 1), so 1 is a term; 9 == 5 (mod 2), so 2 is a term.
Crossrefs
Programs
-
Mathematica
Select[Range[10^7], PowerMod[3, #, #] == Mod[5, #] &] (* Michael De Vlieger, Sep 26 2016 *)
-
PARI
isok(n) = Mod(3, n)^n == Mod(5, n); \\ Michel Marcus, Sep 17 2016
-
Python
A276740_list = [1,2,4]+[n for n in range(5,10**6) if pow(3,n,n) == 5] # Chai Wah Wu, Oct 04 2016
Extensions
a(11)-a(13) from Chai Wah Wu, Oct 05 2016
a(14) from Lars Blomberg, Oct 12 2016
a(15)-a(18) from Max Alekseyev, Oct 13 2016
a(12) was missing Robert G. Wilson v, Oct 19 2016
Comments