A276847 Expansion of eta(q^2) * eta(q^4) * eta(q^6) * eta(q^12) in powers of q.
1, 0, -1, 0, -2, 0, 0, 0, 1, 0, 4, 0, -2, 0, 2, 0, 2, 0, -4, 0, 0, 0, -8, 0, -1, 0, -1, 0, 6, 0, 8, 0, -4, 0, 0, 0, 6, 0, 2, 0, -6, 0, 4, 0, -2, 0, 0, 0, -7, 0, -2, 0, -2, 0, -8, 0, 4, 0, 4, 0, -2, 0, 0, 0, 4, 0, -4, 0, 8, 0, 8, 0, 10, 0, 1, 0, 0, 0, -8, 0, 1, 0
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
Programs
-
Mathematica
CoefficientList[Series[QPochhammer[x^2] QPochhammer[x^4] QPochhammer[x^6] QPochhammer[x^12], {x, 0, 100}], x] (* Jan Mangaldan, Jan 04 2017 *)
Formula
G.f.: x * Product_{k>0} (1 - x^(2*k)) * (1 - x^(4*k)) * (1 - x^(6*k)) * (1 - x^(12*k)).
a(2*n+1) = A030188(n). - Michel Marcus, Sep 25 2016
Euler transform of period 12 sequence [0, -1, 0, -2, 0, -2, 0, -2, 0, -1, 0, -4, ...]. - Georg Fischer, Nov 17 2022
Comments