cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A325130 Numbers in whose prime factorization the exponent of prime(k) is not equal to k for any prime index k.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 43, 44, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 64, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the integer partitions counted by A276429.
The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k + 1/prime(k)^(k+1)) = 0.68974964705635552968... - Amiram Eldar, Jan 09 2021

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
  11: {5}
  12: {1,1,2}
  13: {6}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  23: {9}
  24: {1,1,1,2}
  25: {3,3}
  27: {2,2,2}
  28: {1,1,4}
		

Crossrefs

Programs

  • Maple
    q:= n-> andmap(i-> numtheory[pi](i[1])<>i[2], ifactors(n)[2]):
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 0, a(n-1)) while not q(k) do od; k
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Oct 28 2019
  • Mathematica
    Select[Range[100],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k!=PrimePi[p]]&]

A276937 Numbers m with at least one prime factor prime(k) such that prime(k)^k is a divisor of m, but with no factor prime(j) such that prime(j)^(j+1) divides m.

Original entry on oeis.org

2, 6, 9, 10, 14, 18, 22, 26, 30, 34, 38, 42, 45, 46, 50, 58, 62, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 99, 102, 106, 110, 114, 117, 118, 122, 125, 126, 130, 134, 138, 142, 146, 150, 153, 154, 158, 166, 170, 171, 174, 178, 182, 186, 190, 194, 198, 202, 206, 207, 210, 214, 218, 222, 225, 226, 230, 234, 238, 242, 246, 250
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2016

Keywords

Comments

Numbers m for which A276077(m) = 0 and A276935(m) > 0.
The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k) - Product_{k>=1} (1 - 1/prime(k)^(k-1)) = 0.2803209124521781114031... . - Amiram Eldar, Sep 30 2023

Examples

			14 = 2*7 = prime(1)^1 * prime(4)^1 is a member as the first prime factor (2) satisfies the first condition, and neither prime factor violates the second condition.
36 = 4*9 = prime(1)^2 * prime(2)^2 is NOT a member because prime(1)^2 does not satisfy the second condition.
45 = 5*9 = prime(3)^1 * prime(2)^2 is a member as the latter prime factor satisfies the first condition, and neither prime factor violates the second condition.
		

Crossrefs

Intersection of A276078 and A276936.
Topmost row of A276941 (leftmost column in A276942).

Programs

  • Mathematica
    p[n_]:=FactorInteger[n][[All,1]];f[n_]:=PrimePi/@p[n];
    yQ[n_]:=Select[n/(Prime[f[n]]^f[n]),IntegerQ]!={};
    nQ[n_]:=Select[n/(Prime[f[n]]^(f[n]+1)),IntegerQ]=={};
    Select[Range[2,250],yQ[#]&&nQ[#]&] (* Ivan N. Ianakiev, Sep 28 2016 *)
  • PARI
    is(n) = {my(f = factor(n), c = 0, k); for (i=1, #f~, k = primepi(f[i, 1]); if(f[i, 2] > k, return(0), if( f[i, 2] == k, c++))); c > 0;} \\ Amiram Eldar, Sep 30 2023

A276935 Number of distinct prime factors prime(k) of n such that prime(k)^k, but not prime(k)^(k+1) is a divisor of n.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2016

Keywords

Examples

			For n = 12 = 2*2*3 = prime(1)^2 * prime(2)^1, neither of the prime factors satisfies the condition, thus a(12) = 0.
For n = 18 = 2*3*3 = prime(1)^1 * prime(2)^2, both prime factors satisfy the condition, thus a(18) = 1+1 = 2.
For n = 750 = 2*3*5*5*5 = prime(1)^1 * prime(2)^1 * prime(3)^3, only the prime factors 2 and 5 satisfy the condition, thus a(750) = 1+1 = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[PrimePi[p] == e, 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 30 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); sum(i = 1, #f~, primepi(f[i,1]) == f[i,2]);} \\ Amiram Eldar, Sep 30 2023

Formula

a(1) = 0, for n > 1, a(n) = a(A028234(n)) + [A067029(n) = A055396(n)], where [] is Iverson bracket, giving 1 as its result when the stated equivalence is true and 0 otherwise.
From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = 1 if e = primepi(p), and 0 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (1/prime(k)^k - 1/prime(k)^(k+1)) = 0.33083690651252383414... . (End)

A276938 Second row of A276941: a(n) = A003961(A276937(n)).

Original entry on oeis.org

3, 15, 25, 21, 33, 75, 39, 51, 105, 57, 69, 165, 175, 87, 147, 93, 111, 275, 195, 231, 123, 255, 129, 141, 525, 159, 363, 325, 285, 177, 273, 345, 425, 183, 201, 343, 825, 357, 213, 435, 219, 237, 735, 475, 429, 249, 267, 399, 575, 465, 291, 561, 555, 483, 303, 975, 309, 321, 725
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2016

Keywords

Crossrefs

Row 2 of A276941 (column 2 of A276942).
Subsequence of A276078, but no common terms with A276936.

Programs

Formula

a(n) = A003961(A276937(n)).
Showing 1-4 of 4 results.