A277000
Numerators of an asymptotic series for the Gamma function (even power series).
Original entry on oeis.org
1, -1, 19, -2561, 874831, -319094777, 47095708213409, -751163826506551, 281559662236405100437, -49061598325832137241324057, 5012066724315488368700829665081, -26602063280041700132088988446735433, 40762630349420684160007591156102493590477
Offset: 0
The underlying rational sequence starts:
1, 0, -1/24, 0, 19/5760, 0, -2561/2903040, 0, 874831/1393459200, 0, ...
-
b := n -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k,1/2), k=2..n))/n!:
A277000 := n -> numer(b(2*n)): seq(A277000(n), n=0..12);
# Alternatively the rational sequence by recurrence:
R := proc(n) option remember; local k; `if`(n=0, 1,
add(bernoulli(2*m+2,1/2)* R(n-m-1)/(2*m+1), m=0..n-1)/(2*n)) end:
seq(numer(R(n)), n=0..12); # Peter Luschny, Sep 30 2016
-
CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
b[n_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, 1/2], {k, 2, n}]]]/n!;
a[n_] := Numerator[b[2n]];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Sep 09 2018 *)
A277002
Numerators of an asymptotic series for the Gamma function (odd power series).
Original entry on oeis.org
-1, 7, -31, 127, -511, 1414477, -8191, 118518239, -5749691557, 91546277357, -23273283019, 1982765468311237, -22076500342261, 455371239541065869, -925118910976041358111, 16555640865486520478399, -1302480594081611886641, 904185845619475242495834469891
Offset: 1
The underlying rational sequence b(n) starts:
0, -1/24, 0, 7/2880, 0, -31/40320, 0, 127/215040, 0, -511/608256, ...
-
b := n -> `if`(n=0, 0, bernoulli(n+1, 1/2)/(n*(n+1))):
a := n -> numer(b(2*n-1)):
seq(a(n), n=1..18);
-
b[n_] := BernoulliB[n+1, 1/2]/(n(n+1));
a[n_] := Numerator[b[2n-1]];
Array[a, 18] (* Jean-François Alcover, Sep 09 2018 *)
A277003
Denominators of an asymptotic series for the Gamma function (odd power series).
Original entry on oeis.org
24, 2880, 40320, 215040, 608256, 738017280, 1277952, 4010803200, 32006209536, 65745715200, 1736441856, 12641296711680, 10066329600, 12611097722880, 1337897345089536, 1086454927196160, 3401614098432, 83088011510887219200, 61022895341568
Offset: 1
The underlying rational sequence b(n) starts:
0, -1/24, 0, 7/2880, 0, -31/40320, 0, 127/215040, 0, -511/608256, ...
-
b := n -> `if`(n=0, 0, bernoulli(n+1, 1/2)/(n*(n+1))):
a := n -> denom(b(2*n-1)):
seq(a(n), n=1..19);
-
b[n_] := BernoulliB[n+1, 1/2]/(n(n+1));
a[n_] := Denominator[b[2n-1]];
Array[a, 19] (* Jean-François Alcover, Sep 09 2018 *)
A276996
Numerators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.
Original entry on oeis.org
1, 0, 0, 1, -1, 1, 0, 1, -3, 1, 1, -1, 6, -10, 5, 0, -1, -15, 95, -40, 16, 239, -1, 13, -85, 240, -237, 79, 0, 403, 21, 385, -1575, 3577, -2947, 421, -46409, -239, 3841, 175, 861, -8036, 45458, -10692, 2673, 0, -82451, -2657, 56177, 1638, 19488, -85260, 139656, -86472, 19216
Offset: 0
Polynomials start:
p_0(x) = 1;
p_1(x) = 0;
p_2(x) = 1/6 + -x + x^2;
p_3(x) = (1/2)*x + -(3/2)*x^2 + x^3;
p_4(x) = 1/60 + -x + 6*x^2 + -10*x^3 + 5*x^4;
p_5(x) = -(1/6)*x + -(15/2)*x^2 + (95/3)*x^3 + -40*x^4 + 16*x^5;
p_6(x) = 239/504 + -(1/4)*x + (13/4)*x^2 + -85*x^3 + 240*x^4 + -237*x^5 + 79*x^6;
Triangle starts:
1;
0, 0;
1, -1, 1;
0, 1, -3, 1;
1, -1, 6, -10, 5;
0, -1, -15, 95, -40, 16;
239,-1, 13, -85, 240, -237, 79;
-
A276996_row := proc(n) local p;
p := (n,x) -> CompleteBellB(n,0,seq((k-2)!*bernoulli(k,x),k=2..n)):
seq(numer(coeff(p(n,x),x,k)), k=0..n) end:
seq(A276996_row(n), n=0..9);
# Recurrence for the polynomials:
A276996_poly := proc(n,x) option remember; local z;
if n = 0 then return 1 fi; z := proc(k) option remember;
if k=1 then 0 else (k-2)!*bernoulli(k,x) fi end;
expand(add(binomial(n-1,j)*z(n-j)*A276996_poly(j,x),j=0..n-1)) end:
for n from 0 to 5 do sort(A276996_poly(n,x)) od;
-
CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
p[n_, x_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, x], {k, 2, n}]]];
row[0] = {1}; row[1] = {0, 0}; row[n_] := CoefficientList[p[n, x], x] // Numerator;
Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
Showing 1-4 of 4 results.
Comments