A277228 Convolution of the even-indexed triangular numbers (A014105) and the squares (A000290).
0, 0, 3, 22, 88, 258, 623, 1316, 2520, 4476, 7491, 11946, 18304, 27118, 39039, 54824, 75344, 101592, 134691, 175902, 226632, 288442, 363055, 452364, 558440, 683540, 830115, 1000818, 1198512, 1426278, 1687423, 1985488, 2324256, 2707760, 3140291, 3626406
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[Binomial(n+1, 3)*(4*n^2 +5*n +4)/10: n in [0..40]]; // G. C. Greubel, Oct 22 2018
-
Mathematica
Table[(n - 1) n (n + 1) (4 n^2 + 5 n + 4)/60, {n, 0, 40}] (* Bruno Berselli, Oct 21 2016 *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,0,3,22,88,258},40] (* Harvey P. Dale, Jun 04 2023 *)
-
PARI
concat(vector(2), Vec(x^2*(1+x)*(3+x)/(1-x)^6 + O(x^50))) \\ Colin Barker, Oct 21 2016
Formula
O.g.f.: x^2*(1 + x)*(3 + x)/(1 - x)^6 = (x*(3 + x)/(1 - x)^3)*(x*(1 + x)/(1 - x)^3).
a(n) = binomial(n+1, 3)*(4*n^2 + 5*n + 4)/10 = (n - 1)*n*(n + 1)*(4*n^2 + 5*n + 4)/60.
a(n) = Sum_{k=0..n} A071245(k).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. - Colin Barker, Oct 21 2016
Comments