cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277228 Convolution of the even-indexed triangular numbers (A014105) and the squares (A000290).

Original entry on oeis.org

0, 0, 3, 22, 88, 258, 623, 1316, 2520, 4476, 7491, 11946, 18304, 27118, 39039, 54824, 75344, 101592, 134691, 175902, 226632, 288442, 363055, 452364, 558440, 683540, 830115, 1000818, 1198512, 1426278, 1687423, 1985488, 2324256, 2707760, 3140291, 3626406
Offset: 0

Views

Author

Wolfdieter Lang, Oct 20 2016

Keywords

Comments

This sequence was originally proposed in a comment on A071245 by J. M. Bergot as giving the first differences. Therefore, a(n) gives the partial sums of A071245.

Crossrefs

Programs

  • Magma
    [Binomial(n+1, 3)*(4*n^2 +5*n +4)/10: n in [0..40]]; // G. C. Greubel, Oct 22 2018
  • Mathematica
    Table[(n - 1) n (n + 1) (4 n^2 + 5 n + 4)/60, {n, 0, 40}] (* Bruno Berselli, Oct 21 2016 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,0,3,22,88,258},40] (* Harvey P. Dale, Jun 04 2023 *)
  • PARI
    concat(vector(2), Vec(x^2*(1+x)*(3+x)/(1-x)^6 + O(x^50))) \\ Colin Barker, Oct 21 2016
    

Formula

O.g.f.: x^2*(1 + x)*(3 + x)/(1 - x)^6 = (x*(3 + x)/(1 - x)^3)*(x*(1 + x)/(1 - x)^3).
a(n) = Sum_{k=0..n} A014105(n-k)*A000290(k).
a(n) = binomial(n+1, 3)*(4*n^2 + 5*n + 4)/10 = (n - 1)*n*(n + 1)*(4*n^2 + 5*n + 4)/60.
a(n) = Sum_{k=0..n} A071245(k).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. - Colin Barker, Oct 21 2016