cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A260443 Prime factorization representation of Stern polynomials: a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = a(n)*a(n+1).

Original entry on oeis.org

1, 2, 3, 6, 5, 18, 15, 30, 7, 90, 75, 270, 35, 450, 105, 210, 11, 630, 525, 6750, 245, 20250, 2625, 9450, 77, 15750, 3675, 47250, 385, 22050, 1155, 2310, 13, 6930, 5775, 330750, 2695, 3543750, 128625, 1653750, 847, 4961250, 643125, 53156250, 18865, 24806250, 202125, 727650, 143, 1212750, 282975, 57881250, 29645, 173643750, 1414875, 18191250, 1001
Offset: 0

Views

Author

Antti Karttunen, Jul 28 2015

Keywords

Comments

The exponents in the prime factorization of term a(n) give the coefficients of the n-th Stern polynomial. See A125184 and the examples.
None of the terms have prime gaps in their factorization, i.e., all can be found in A073491.
Contains neither perfect squares nor prime powers with exponent > 1. A277701 gives the positions of the terms that are 2*square. - Antti Karttunen, Oct 27 2016
Many of the derived sequences (like A002487) have similar "Fir forest" or "Gaudian cathedrals" style scatter plot. - Antti Karttunen, Mar 21 2017

Examples

			n    a(n)   prime factorization    Stern polynomial
------------------------------------------------------------
0       1   (empty)                B_0(x) = 0
1       2   p_1                    B_1(x) = 1
2       3   p_2                    B_2(x) = x
3       6   p_2 * p_1              B_3(x) = x + 1
4       5   p_3                    B_4(x) = x^2
5      18   p_2^2 * p_1            B_5(x) = 2x + 1
6      15   p_3 * p_2              B_6(x) = x^2 + x
7      30   p_3 * p_2 * p_1        B_7(x) = x^2 + x + 1
8       7   p_4                    B_8(x) = x^3
9      90   p_3 * p_2^2 * p_1      B_9(x) = x^2 + 2x + 1
		

Crossrefs

Same sequence sorted into ascending order: A260442.
Cf. also A048675, A277333 (left inverses).
Cf. A277323, A277324 (bisections), A277200 (even terms sorted), A277197 (first differences), A277198.
Cf. A277316 (values at primes), A277318.
Cf. A023758 (positions of squarefree terms), A101082 (of terms not squarefree), A277702 (positions of records), A277703 (their values).
Cf. A283992, A283993 (number of irreducible, reducible polynomials in range 1 .. n).
Cf. also A206296 (Fibonacci polynomials similarly represented).

Programs

  • Maple
    b:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    a:= proc(n) option remember; `if`(n<2, n+1,
          `if`(irem(n, 2, 'h')=0, b(a(h)), a(h)*a(n-h)))
        end:
    seq(a(n), n=0..56);  # Alois P. Heinz, Jul 04 2024
  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a@ n, {n, 0, 56}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ After Charles R Greathouse IV's code for "ps" in A186891.
    \\ Antti Karttunen, Oct 11 2016
    
  • Python
    from sympy import factorint, prime, primepi
    from functools import reduce
    from operator import mul
    def a003961(n):
        F = factorint(n)
        return 1 if n==1 else reduce(mul, (prime(primepi(i) + 1)**F[i] for i in F))
    def a(n): return n + 1 if n<2 else a003961(a(n//2)) if n%2==0 else a((n - 1)//2)*a((n + 1)//2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 21 2017
  • Scheme
    ;; Uses memoization-macro definec:
    (definec (A260443 n) (cond ((<= n 1) (+ 1 n)) ((even? n) (A003961 (A260443 (/ n 2)))) (else (* (A260443 (/ (- n 1) 2)) (A260443 (/ (+ n 1) 2))))))
    ;; A more standalone version added Oct 10 2016, requiring only an implementation of A000040 and the memoization-macro definec:
    (define (A260443 n) (product_primes_to_kth_powers (A260443as_coeff_list n)))
    (define (product_primes_to_kth_powers nums) (let loop ((p 1) (nums nums) (i 1)) (cond ((null? nums) p) (else (loop (* p (expt (A000040 i) (car nums))) (cdr nums) (+ 1 i))))))
    (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))
    (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))
    

Formula

a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = a(n)*a(n+1).
Other identities. For all n >= 0:
A001221(a(n)) = A277314(n). [#nonzero coefficients in each polynomial.]
A001222(a(n)) = A002487(n). [When each polynomial is evaluated at x=1.]
A048675(a(n)) = n. [at x=2.]
A090880(a(n)) = A178590(n). [at x=3.]
A248663(a(n)) = A264977(n). [at x=2 over the field GF(2).]
A276075(a(n)) = A276081(n). ["at factorials".]
A156552(a(n)) = A277020(n). [Converted to "unary-binary" encoding.]
A051903(a(n)) = A277315(n). [Maximal coefficient.]
A277322(a(n)) = A277013(n). [Number of irreducible polynomial factors.]
A005361(a(n)) = A277325(n). [Product of nonzero coefficients.]
A072411(a(n)) = A277326(n). [And their LCM.]
A007913(a(n)) = A277330(n). [The squarefree part.]
A000005(a(n)) = A277705(n). [Number of divisors.]
A046523(a(n)) = A278243(n). [Filter-sequence.]
A284010(a(n)) = A284011(n). [True for n > 1. Another filter-sequence.]
A003415(a(n)) = A278544(n). [Arithmetic derivative.]
A056239(a(n)) = A278530(n). [Weighted sum of coefficients.]
A097249(a(n)) = A277899(n).
a(A000079(n)) = A000040(n+1).
a(A000225(n)) = A002110(n).
a(A000051(n)) = 3*A002110(n).
For n >= 1, a(A000918(n)) = A070826(n).
A007949(a(n)) is the interleaving of A000035 and A005811, probably A101979.
A061395(a(n)) = A277329(n).
Also, for all n >= 1:
A055396(a(n)) = A001511(n).
A252735(a(n)) = A061395(a(n)) - 1 = A057526(n).
a(A000040(n)) = A277316(n).
a(A186891(1+n)) = A277318(n). [Subsequence for irreducible polynomials].

Extensions

More linking formulas added by Antti Karttunen, Mar 21 2017

A206284 Numbers that match irreducible polynomials over the nonnegative integers.

Original entry on oeis.org

3, 6, 9, 10, 12, 18, 20, 22, 24, 27, 28, 30, 36, 40, 42, 44, 46, 48, 50, 52, 54, 56, 60, 66, 68, 70, 72, 76, 80, 81, 88, 92, 96, 98, 100, 102, 104, 108, 112, 114, 116, 118, 120, 124, 126, 130, 132, 136, 140, 144, 148, 150, 152, 154, 160, 162, 164, 168, 170
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2012

Keywords

Comments

Starting with 1, which encodes 0-polynomial, each integer m encodes (or "matches") a polynomial p(m,x) with nonnegative integer coefficients determined by the prime factorization of m. Write m = prime(1)^e(1) * prime(2)^e(2) * ... * prime(k)^e(k); then p(m,x) = e(1) + e(2)x + e(3)x^2 + ... + e(k)x^k.
Identities:
p(m*n,x) = p(m,x) + p(n,x),
p(m*n,x) = p(gcd(m,n),x) + p(lcm(m,n),x),
p(m+n,x) = p(gcd(m,n),x) + p((m+n)/gcd(m,n),x), so that if A003057 is read as a square matrix, then
p(A003057,x) = p(A003989,x) + p(A106448,x).
Apart from powers of 3, all terms are even. - Charles R Greathouse IV, Feb 11 2012
Contains 2*p^m and p*2^m if p is an odd prime and m is in A052485. - Robert Israel, Oct 09 2016

Examples

			Polynomials having nonnegative integer coefficients are matched to the positive integers as follows:
   m    p(m,x)    irreducible
  ---------------------------
   1    0         no
   2    1         no
   3    x         yes
   4    2         no
   5    x^2       no
   6    1+x       yes
   7    x^3       no
   8    3         no
   9    2x        yes
  10    1+x^2     yes
		

Crossrefs

Cf. A052485, A206285 (complement), A206296.
Positions of ones in A277322.
Terms of A277318 form a proper subset of this sequence. Cf. also A277316.
Other sequences about factorization in the same polynomial ring: A206442, A284010.
Polynomial multiplication using the same encoding: A297845.

Programs

  • Maple
    P:= n -> add(f[2]*x^(numtheory:-pi(f[1])-1), f =  ifactors(n)[2]):
    select(irreduc @ P, [$1..200]); # Robert Israel, Oct 09 2016
  • Mathematica
    b[n_] := Table[x^k, {k, 0, n}];
    f[n_] := f[n] = FactorInteger[n]; z = 400;
    t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]]
    == Prime[k], f[n][[m, 2]], 0];
    u = Table[Apply[Plus,
        Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
          Length[f[n]]}]], {n, 1, z}];
    p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]]
    Table[p[n, x], {n, 1, z/4}]
    v = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]],
    AppendTo[v, n]], {n, z/2}]; v  (* A206284 *)
    Complement[Range[200], v]      (* A206285 *)
  • PARI
    is(n)=my(f=factor(n));polisirreducible(sum(i=1, #f[,1], f[i,2]*'x^primepi(f[i,1]-1))) \\ Charles R Greathouse IV, Feb 12 2012

Extensions

Introductory comments edited by Antti Karttunen, Oct 09 2016 and Peter Munn, Aug 13 2022

A277333 Left inverse of A260443, giving 0 as a result when n is outside of the range of A260443.

Original entry on oeis.org

0, 1, 2, 0, 4, 3, 8, 0, 0, 0, 16, 0, 32, 0, 6, 0, 64, 5, 128, 0, 0, 0, 256, 0, 0, 0, 0, 0, 512, 7, 1024, 0, 0, 0, 12, 0, 2048, 0, 0, 0, 4096, 0, 8192, 0, 0, 0, 16384, 0, 0, 0, 0, 0, 32768, 0, 0, 0, 0, 0, 65536, 0, 131072, 0, 0, 0, 0, 0, 262144, 0, 0, 0, 524288, 0, 1048576, 0, 10, 0, 24, 0, 2097152, 0, 0, 0, 4194304, 0, 0, 0, 0, 0, 8388608, 9
Offset: 1

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Examples

			a(1) = 0 because A260443(0) = 1. For n > 1, a(n) = 0 only if n does not occur in the range of A260443.
a(6) = 3 because A260443(3) = 6.
		

Crossrefs

Cf. A277316, A260442 (from 2 onward, the positions of nonzeros), A277317 (positions of primes).

Programs

Formula

If A260443(A048675(n)) = n, then a(n) = A048675(n), otherwise a(n) = 0.
Other identities. For all n >= 0:
a(A260443(n)) = n.
a(2n+1) = 2*a(A064989(2n+1)).
If a(2n) > 0 [by necessity an odd number in that case], then A005811((a(2n)-1)/2) = A007949(2n). [See comment in A277324.]

A277317 Numbers k such that A277333(k) is a prime.

Original entry on oeis.org

3, 6, 18, 30, 270, 450, 630, 2310, 6750, 9450, 22050, 510510, 727650, 2668050, 3543750, 4961250, 25467750, 29099070
Offset: 1

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Comments

Sequence A277316 sorted into ascending order. See comments in that entry.
Terms k present in A277319 for which A260443(A048675(k)) = k. - David A. Corneth and Antti Karttunen, Oct 13 2016

Crossrefs

Cf. A277316.
Intersection of A260442 and A277319.
Also, after the initial term, the intersection of A277200 and A277319.

Programs

A277318 Prime-factorization representation of irreducible (non-constant) Stern-polynomials B(n,x), listed in the order of increasing index n: a(n) = A260443(A186891(n+1)).

Original entry on oeis.org

3, 6, 18, 30, 270, 450, 630, 6750, 9450, 15750, 22050, 2310, 3543750, 4961250, 53156250, 727650, 173643750, 18191250, 25467750, 2668050, 90090, 40020750, 891371250, 9550406250, 212713593750, 1400726250, 3190703906250, 467969906250, 5013963281250, 104053950, 173423250, 16378946718750, 1715889656250, 245684200781250
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2016

Keywords

Crossrefs

All terms are included in A206284 and in A277200 (apart from initial 3).
Cf. A277316 (conjectured subsequence), from which this differs for the first time at n=10, where a(10) = 15750 , while A277316(10) = 22050.
Showing 1-5 of 5 results.