A277373 a(n) = Sum_{k=0..n} binomial(n,n-k)*n^(n-k)*n!/(n-k)!.
1, 2, 14, 168, 2840, 61870, 1649232, 51988748, 1891712384, 78031713690, 3598075308800, 183396819358192, 10239159335648256, 621414669926828102, 40733145577028065280, 2867932866586451980500, 215859025837098699948032, 17295664826665032427023922, 1469838791737283957748596736
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..356
- Eric Weisstein's World of Mathematics, Laguerre Polynomial
- Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind
- Wikipedia, Laguerre polynomials
Crossrefs
Cf. A002720 (n!L(n,-1)), A087912 (n!L(n,-2)), A277382 (n!L(n,-3)), A277372 (n!L(n,-n)-n^n), A277423 (n!L(n,n)), A144084 (polynomials).
Cf. A277391 (n!L(n,-2*n)), A277392 (n!L(n,-3*n)), A277418 (n!L(n,-4*n)), A277419 (n!L(n,-5*n)), A277420 (n!L(n,-6*n)), A277421 (n!L(n,-7*n)), A277422 (n!L(n,-8*n)).
Main diagonal of A289192.
Programs
-
Magma
[(&+[Binomial(n, n-k)*Binomial(n, k)*n^(n-k)*Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 16 2018
-
Maple
A277373 := n -> n!*LaguerreL(n, -n): seq(simplify(A277373(n)), n=0..18); # second Maple program: a:= n-> n! * add(binomial(n, i)*n^i/i!, i=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Jun 27 2017
-
Mathematica
Table[n!*LaguerreL[n, -n], {n, 0, 30}] (* G. C. Greubel, May 16 2018 *)
-
PARI
a(n) = sum(k=0,n, binomial(n,n-k)*n^(n-k)*n!/(n-k)!) \\ Charles R Greathouse IV, Feb 07 2017
-
PARI
a(n) = n!*pollaguerre(n, 0, -n); \\ Michel Marcus, Feb 05 2021
-
Sage
@cached_function def L(n, x): if n == 0: return 1 if n == 1: return 1 - x return (L(n-1,x) * (2*n-1-x) - L(n-2,x)*(n-1))/n A277373 = lambda n: factorial(n)*L(n, -n) print([A277373(n) for n in (0..20)])
Formula
a(n) = p(n,n) where p(n,x) = Sum_{k=0..n} binomial(n,n-k)*x^(n-k)*n!/(n-k)!. The coefficients of these polynomials are in A144084 (sorted by falling powers).
a(n) = n!*LaguerreL(n, -n).
a(n) = (-1)^n*KummerU(-n, 1, -n).
a(n) = n^n*hypergeom([-n, -n], [], 1/n) for n>=1.
a(n) ~ n^n * phi^(2*n+1) * exp(n/phi-n) / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2016
a(n) = n! * [x^n] exp(n*x/(1-x))/(1-x). - Alois P. Heinz, Jun 28 2017
a(n) = n!^2 * [x^n] exp(x) * BesselI(0,2*sqrt(n*x)). - Ilya Gutkovskiy, Jun 19 2022
Comments