cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A274246 a(n) = Sum_{k=0..n} binomial(n, k)^3 * 2^(n-k) * k!.

Original entry on oeis.org

1, 3, 22, 230, 3048, 48152, 875536, 17907024, 405320320, 10030449536, 268836428544, 7744939895552, 238352004594688, 7795463142466560, 269761049981827072, 9839883848966985728, 377091995258812268544, 15139047281589466136576, 635088889901946682408960, 27775758544209632635060224, 1263876454164193257295446016
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 12 2016

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n,j)^3*Factorial(j)*2^(n-j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Dec 27 2022
    
  • Maple
    f:= gfun:-rectoproc({n*(2*n - 5)*a(n) = (6*n^3 - 13*n^2 - 8*n + 6)*a(n-1) - (n-1)*(6*n^3 - 51*n^2 + 124*n - 90)*a(n-2) + (n-2)^3*(n-1)*(2*n - 3)*a(n-3),a(0)=1,a(1)=3,a(2)=22},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Nov 16 2017
  • Mathematica
    Table[Sum[Binomial[n, k]^3 * 2^(n-k) * k!, {k, 0, n}], {n, 0, 20}]
  • SageMath
    def A274246(n): return sum(binomial(n,j)^3*factorial(j)*2^(n-j) for j in range(n+1))
    [A274246(n) for n in range(31)] # G. C. Greubel, Dec 27 2022

Formula

Recurrence: n*(2*n - 5)*a(n) = (6*n^3 - 13*n^2 - 8*n + 6)*a(n-1) - (n-1)*(6*n^3 - 51*n^2 + 124*n - 90)*a(n-2) + (n-2)^3*(n-1)*(2*n - 3)*a(n-3).
a(n) ~ n^(n - 1/6) * exp(3*2^(1/3)*n^(2/3) - 2^(2/3)*n^(1/3) - n + 2/3) / (2^(5/6)*sqrt(3*Pi)) * (1 + 31*2^(1/3)/(27*n^(1/3)) + 3437/(3645*2^(1/3) * n^(2/3))).
Sum_{n>=0} a(n) * x^n / n!^3 = BesselI(0,2*sqrt(x)) * Sum_{n>=0} 2^n * x^n / n!^3. - Ilya Gutkovskiy, Jun 19 2022
a(n) = 2^n * Hypergeometric3F1([-n, -n, -n], [1], -1/2). - G. C. Greubel, Dec 27 2022

A354942 a(n) = Sum_{k=0..n} binomial(n,k)^3 * k! * (-3)^(n-k).

Original entry on oeis.org

1, -2, -13, 60, 1113, 1002, -149049, -1932696, 7188705, 676972566, 10821753819, -32865363468, -5892948042327, -144308265498270, -748826955982593, 74472859430936928, 3199088479682040129, 57854159449349840046, -654712764990637945725, -87482030500940669619156
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^3 k! (-3)^(n - k), {k, 0, n}], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[BesselI[0, 2 Sqrt[x]] Sum[(-3)^k x^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^3 * k! * (-3)^(n-k)); \\ Michel Marcus, Jun 12 2022

Formula

Sum_{n>=0} a(n) * x^n / n!^3 = BesselI(0,2*sqrt(x)) * Sum_{n>=0} (-3)^n * x^n / n!^3.

A354943 a(n) = Sum_{k=0..n} binomial(n,k)^3 * k! * n^(n-k).

Original entry on oeis.org

1, 2, 22, 438, 12824, 496370, 23914512, 1379269094, 92667551104, 7108231236066, 612974464428800, 58702772664490262, 6181602019316333568, 709911177607125141362, 88301595129435811723264, 11825985945777638231211750, 1696696168760520436580974592, 259624546758869333450285984066
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[Sum[Binomial[n, k]^3 k! n^(n - k), {k, 0, n}], {n, 0, 17}]
    Unprotect[Power]; 0^0 = 1; Table[n!^3 SeriesCoefficient[BesselI[0, 2 Sqrt[x]] Sum[n^k x^k/k!^3, {k, 0, n}], {x, 0, n}], {n, 0, 17}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^3 * k! * n^(n-k)); \\ Michel Marcus, Jun 12 2022

Formula

a(n) = n!^3 * [x^n] BesselI(0,2*sqrt(x)) * Sum_{k>=0} n^k * x^k / k!^3.
a(n) ~ c * n^(n - 1/2) / (exp(r*n) * r^(2*n)), where r = (2 - 5*(2/(3*sqrt(69)-11))^(1/3) + ((3*sqrt(69)-11)/2)^(1/3))/3 = 0.430159709001946734... is the real root of the equation r^2 = (1-r)^3 and c = sqrt(138 + 2^(2/3)*(69*(8901 - 223*sqrt(69)))^(1/3) + 2^(2/3)*(69*(8901 + 223*sqrt(69)))^(1/3))/(2*sqrt(69*Pi)) = 0.684738330749970434111338151096549475398274404060139170789278633219363118... - Vaclav Kotesovec, Jul 01 2022, updated Mar 17 2024
Showing 1-3 of 3 results.