cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A274279 Expansion of e.g.f.: tanh(x*W(x)), where W(x) = LambertW(-x)/(-x).

Original entry on oeis.org

1, 2, 7, 40, 341, 3936, 57107, 992384, 20025385, 459466240, 11804134079, 335571265536, 10456512176189, 354362575314944, 12975301760361163, 510462668072058880, 21472710312090391889, 961728814178702327808, 45692671937666739799799, 2295278998002033651875840, 121545436687537993689631525, 6767130413049423041105231872, 395177438856180565803457658627, 24152146710231984411570685870080
Offset: 1

Views

Author

Paul D. Hanna, Jun 19 2016

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 7*x^3/3! + 40*x^4/4! + 341*x^5/5! + 3936*x^6/6! + 57107*x^7/7! + 992384*x^8/8! + 20025385*x^9/9! + 459466240*x^10/10! + 11804134079*x^11/11! + 335571265536*x^12/12! +...
such that A(x) = tanh(x*W(x))
where W(x) = LambertW(-x)/(-x) begins
W(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! + 100000000*x^9/9! +...+ (n+1)^(n-1)*x^n/n! +...
and satisfies W(x) = exp(x*W(x)).
Also, A(x) = (W(x)^2 - 1)/(W(x)^2 + 1), where
W(x)^2 = 1 + 2*x + 8*x^2/2! + 50*x^3/3! + 432*x^4/4! + 4802*x^5/5! + 65536*x^6/6! + 1062882*x^7/7! + 20000000*x^8/8! +...+ 2*(n+2)^(n-1)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(LambertW[-x]^2 - x^2)/(LambertW[-x]^2 + x^2), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 23 2016 *)
    Rest[With[{nmax=30}, CoefficientList[Series[Tanh[-LambertW[-x]], {x,0,nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Feb 19 2018 *)
  • PARI
    {a(n) = my(W=sum(m=0, n, (m+1)^(m-1)*x^m/m!) +x*O(x^n)); n!*polcoeff(tanh(x*W), n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(W = sum(m=0, n, (m+1)^(m-1)*x^m/m!) +x*O(x^n)); n!*polcoeff( (W^2 - 1)/(W^2 + 1), n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(tanh(-lambertw(-x)))) \\ G. C. Greubel, Feb 19 2018

Formula

E.g.f.: (W(x)^2 - 1)/(W(x)^2 + 1), where W(x) = LambertW(-x)/(-x) = exp(x*W(x)) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
a(n) ~ 4*exp(2) * n^(n-1) / (1+exp(2))^2. - Vaclav Kotesovec, Jun 23 2016
a(n) = Sum_{k=0..n-1} (-1)^k * A264902(n,k). - Alois P. Heinz, Aug 08 2022

A277467 E.g.f.: tan(x)/(1+LambertW(-x)).

Original entry on oeis.org

0, 1, 2, 14, 116, 1376, 19926, 346128, 6964712, 159396352, 4085415850, 115906440704, 3605365584732, 121998144397312, 4461190462108030, 175305587376883712, 7366747721719011280, 329646098258032459776, 15649117182518598570834, 785528920149992297070592
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Tan[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
    Table[Sin[Pi*n/2] * 2^(n+1) * (2^(n+1) - 1) * BernoulliB[n+1] / (n+1) + Sum[Binomial[n, k] * Sin[Pi*k/2] * 2^(k+1) * (2^(k+1)-1) * BernoulliB[k+1] /(k+1) * (n-k)^(n-k), {k, 0, n-1}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 28 2016 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(serlaplace(tan(x)/(1 + lambertw(-x))))) \\ G. C. Greubel, May 29 2018

Formula

a(n) ~ tan(exp(-1)) * n^n.

A277480 E.g.f.: -tanh(x)*LambertW(-x).

Original entry on oeis.org

0, 0, 2, 6, 28, 280, 3486, 50624, 877080, 17677440, 404537050, 10360548352, 293676213876, 9126971869184, 308568877413174, 11274243944693760, 442681525701106096, 18588860836606935040, 831243363178769061426, 39436124829328468606976, 1978382154057910059275340
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2016

Keywords

Crossrefs

Programs

  • Maple
    F:= proc(m) option remember; add(binomial(m,2*k+1)*(m-2*k-1)^(m-2*k-2),k=0..floor(m/2)-1) - add(binomial(m,2*k)*procname(m-2*k),k=1..floor(m/2)) end proc:
    map(F, [$0..30]); # Robert Israel, Oct 26 2016
  • Mathematica
    CoefficientList[Series[-Tanh[x]*LambertW[-x], {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^50); concat([0,0],Vec(serlaplace(tanh(-x)*lambertw(-x))) ) \\ G. C. Greubel, Nov 05 2017

Formula

a(n) ~ tanh(exp(-1)) * n^(n-1).
a(n) = Sum_{k=0..floor(n/2)-1} binomial(n,2*k+1)*(m-2*k-1)^(m-2*k-2) - Sum_{k=1..floor(n/2)} binomial(n,2*k)*a(n-2*k). - Robert Israel, Oct 26 2016

A277501 E.g.f.: -LambertW(-tanh(x)).

Original entry on oeis.org

0, 1, 2, 7, 48, 461, 5488, 79171, 1347328, 26396185, 585025024, 14473813311, 395433660416, 11824374817893, 384118189803520, 13470784014801787, 507233444671848448, 20411081546839908401, 874130806090067607552, 39696948293418345150327
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-LambertW[-Tanh[x]], {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^10); concat([0], Vec(serlaplace(-lambertw(-tanh(x))))) \\ G. C. Greubel, Nov 09 2017

Formula

a(n) ~ sqrt(1-exp(-2)) * 2^(n-1/2) * (log((exp(1)+1)/(exp(1)-1)))^(1/2-n) * exp(1/2-n) * n^(n-1).
Showing 1-4 of 4 results.